Quantum Error Mitigation (2210.00921v3)
Abstract: For quantum computers to successfully solve real-world problems, it is necessary to tackle the challenge of noise: the errors which occur in elementary physical components due to unwanted or imperfect interactions. The theory of quantum fault tolerance can provide an answer in the long term, but in the coming era of `NISQ' machines we must seek to mitigate errors rather than completely remove them. This review surveys the diverse methods that have been proposed for quantum error mitigation, assesses their in-principle efficacy, and then describes the hardware demonstrations achieved to date. We identify the commonalities and limitations among the methods, noting how mitigation methods can be chosen according to the primary type of noise present, including algorithmic errors. Open problems in the field are identified and we discuss the prospects for realising mitigation-based devices that can deliver quantum advantage with an impact on science and business.
- Abobeih, M H, Y. Wang, J. Randall, S. J. H. Loenen, C. E. Bradley, M. Markham, D. J. Twitchen, B. M. Terhal, and T. H. Taminiau (2022), “Fault-tolerant operation of a logical qubit in a diamond quantum processor,” Nature 606 (7916), 884–889.
- Aharonov, D, and M. Ben-Or (1997), “Fault-tolerant Quantum Computation with Constant Error,” in Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC ’97 (ACM, New York, NY, USA) pp. 176–188.
- Altman, Ehud, Kenneth R. Brown, Giuseppe Carleo, Lincoln D. Carr, Eugene Demler, Cheng Chin, Brian DeMarco, Sophia E. Economou, Mark A. Eriksson, Kai-Mei C. Fu, Markus Greiner, Kaden R.A. Hazzard, Randall G. Hulet, Alicia J. Kollár, Benjamin L. Lev, Mikhail D. Lukin, Ruichao Ma, Xiao Mi, Shashank Misra, Christopher Monroe, Kater Murch, Zaira Nazario, Kang-Kuen Ni, Andrew C. Potter, Pedram Roushan, Mark Saffman, Monika Schleier-Smith, Irfan Siddiqi, Raymond Simmonds, Meenakshi Singh, I.B. Spielman, Kristan Temme, David S. Weiss, Jelena Vučković, Vladan Vuletić, Jun Ye, and Martin Zwierlein (2021), “Quantum Simulators: Architectures and Opportunities,” PRX Quantum 2 (1), 017003.
- Arute, Frank, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis (2019), “Quantum supremacy using a programmable superconducting processor,” Nature 574 (7779), 505–510.
- Asavanant, Warit, Yu Shiozawa, Shota Yokoyama, Baramee Charoensombutamon, Hiroki Emura, Rafael N. Alexander, Shuntaro Takeda, Jun-ichi Yoshikawa, Nicolas C. Menicucci, Hidehiro Yonezawa, and Akira Furusawa (2019), “Generation of time-domain-multiplexed two-dimensional cluster state,” Science 366 (6463), 373–376.
- Baidu, (2023), “QCompute,” Baidu.
- Barron, George S, and Christopher J. Wood (2020), “Measurement Error Mitigation for Variational Quantum Algorithms,” arXiv:2010.08520 [quant-ph].
- Bennett, Charles H, Gilles Brassard, Sandu Popescu, Benjamin Schumacher, John A. Smolin, and William K. Wootters (1996a), “Purification of Noisy Entanglement and Faithful Teleportation via Noisy Channels,” Physical Review Letters 76 (5), 722–725.
- Bergholm, Ville, Josh Izaac, Maria Schuld, Christian Gogolin, Shahnawaz Ahmed, Vishnu Ajith, M. Sohaib Alam, Guillermo Alonso-Linaje, B. AkashNarayanan, Ali Asadi, Juan Miguel Arrazola, Utkarsh Azad, Sam Banning, Carsten Blank, Thomas R. Bromley, Benjamin A. Cordier, Jack Ceroni, Alain Delgado, Olivia Di Matteo, Amintor Dusko, Tanya Garg, Diego Guala, Anthony Hayes, Ryan Hill, Aroosa Ijaz, Theodor Isacsson, David Ittah, Soran Jahangiri, Prateek Jain, Edward Jiang, Ankit Khandelwal, Korbinian Kottmann, Robert A. Lang, Christina Lee, Thomas Loke, Angus Lowe, Keri McKiernan, Johannes Jakob Meyer, J. A. Montañez-Barrera, Romain Moyard, Zeyue Niu, Lee James O’Riordan, Steven Oud, Ashish Panigrahi, Chae-Yeun Park, Daniel Polatajko, Nicolás Quesada, Chase Roberts, Nahum Sá, Isidor Schoch, Borun Shi, Shuli Shu, Sukin Sim, Arshpreet Singh, Ingrid Strandberg, Jay Soni, Antal Száva, Slimane Thabet, Rodrigo A. Vargas-Hernández, Trevor Vincent, Nicola Vitucci, Maurice Weber, David Wierichs, Roeland Wiersema, Moritz Willmann, Vincent Wong, Shaoming Zhang, and Nathan Killoran (2018), “PennyLane: Automatic differentiation of hybrid quantum-classical computations,” .
- Bergquist, J C, Randall G. Hulet, Wayne M. Itano, and D. J. Wineland (1986), “Observation of Quantum Jumps in a Single Atom,” Physical Review Letters 57 (14), 1699–1702.
- Blais, Alexandre, Ren-Shou Huang, Andreas Wallraff, S. M. Girvin, and R. J. Schoelkopf (2004), “Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation,” Physical Review A 69 (6), 062320.
- Bonet-Monroig, X, R. Sagastizabal, M. Singh, and T. E. O’Brien (2018), “Low-cost error mitigation by symmetry verification,” Physical Review A 98 (6), 062339.
- Bonet-Monroig, Xavier, Ryan Babbush, and Thomas E. O’Brien (2020), “Nearly Optimal Measurement Scheduling for Partial Tomography of Quantum States,” Physical Review X 10 (3), 031064.
- Bravyi, Sergey, and David Gosset (2016), “Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates,” Physical Review Letters 116 (25), 250501.
- Bravyi, Sergey, and Alexei Kitaev (2002), “Fermionic quantum computation,” Annals of Physics 298 (1), 210–226.
- Bravyi, Sergey, Sarah Sheldon, Abhinav Kandala, David C. Mckay, and Jay M. Gambetta (2021), “Mitigating measurement errors in multiqubit experiments,” Physical Review A 103 (4), 042605.
- Breuckmann, Nikolas P, and Jens Niklas Eberhardt (2021), “Quantum Low-Density Parity-Check Codes,” PRX Quantum 2 (4), 040101.
- Bridgeman, Jacob C, and Christopher T Chubb (2017), “Hand-waving and interpretive dance: An introductory course on tensor networks,” Journal of Physics A: Mathematical and Theoretical 50 (22), 223001.
- Bultrini, Daniel, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, M. Cerezo, Patrick J. Coles, and Lukasz Cincio (2023), “Unifying and benchmarking state-of-the-art quantum error mitigation techniques,” Quantum 7, 1034.
- Burgarth, Daniel, Paolo Facchi, Giovanni Gramegna, and Saverio Pascazio (2019), “Generalized product formulas and quantum control,” Journal of Physics A: Mathematical and Theoretical 52 (43), 435301.
- Cai, Zhenyu (2020), “Resource Estimation for Quantum Variational Simulations of the Hubbard Model,” Physical Review Applied 14 (1), 014059.
- Cai, Zhenyu (2021a), ‘‘Multi-exponential error extrapolation and combining error mitigation techniques for NISQ applications,” npj Quantum Information 7, 80.
- Cai, Zhenyu (2021b), “A Practical Framework for Quantum Error Mitigation,” arXiv:2110.05389 [quant-ph].
- Cai, Zhenyu (2021c), “Quantum Error Mitigation using Symmetry Expansion,” Quantum 5, 548.
- Cai, Zhenyu (2021d), “Resource-efficient Purification-based Quantum Error Mitigation,” arXiv:2107.07279 [quant-ph].
- Cai, Zhenyu, Adam Siegel, and Simon Benjamin (2023), “Looped Pipelines Enabling Effective 3D Qubit Lattices in a Strictly 2D Device,” PRX Quantum 4 (2), 020345.
- Calderbank, A R, and Peter W. Shor (1996), “Good quantum error-correcting codes exist,” Physical Review A 54 (2), 1098–1105.
- Campbell, Earl (2019), “Random Compiler for Fast Hamiltonian Simulation,” Physical Review Letters 123 (7), 070503.
- Cao, Ningping, Junan Lin, David Kribs, Yiu-Tung Poon, Bei Zeng, and Raymond Laflamme (2022b), “NISQ: Error Correction, Mitigation, and Noise Simulation,” arXiv:2111.02345 [quant-ph].
- Chen, Senrui, Wenjun Yu, Pei Zeng, and Steven T. Flammia (2021), “Robust Shadow Estimation,” PRX Quantum 2 (3), 030348.
- Chen, Yanzhu, Maziar Farahzad, Shinjae Yoo, and Tzu-Chieh Wei (2019), “Detector tomography on IBM quantum computers and mitigation of an imperfect measurement,” Physical Review A 100 (5), 052315.
- Childs, Andrew M, Aaron Ostrander, and Yuan Su (2019), “Faster quantum simulation by randomization,” Quantum 3, 182.
- Childs, Andrew M, and Nathan Wiebe (2012), “Hamiltonian simulation using linear combinations of unitary operations,” Quantum Information and Computation 12 (11&12), 901–924.
- Chow, J M, L. DiCarlo, J. M. Gambetta, A. Nunnenkamp, Lev S. Bishop, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf (2010), “Detecting highly entangled states with a joint qubit readout,” Physical Review A 81 (6), 062325.
- Chow, Jerry M, A. D. Córcoles, Jay M. Gambetta, Chad Rigetti, B. R. Johnson, John A. Smolin, J. R. Rozen, George A. Keefe, Mary B. Rothwell, Mark B. Ketchen, and M. Steffen (2011), “Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits,” Physical Review Letters 107 (8), 080502.
- Cirstoiu, Cristina, Silas Dilkes, Daniel Mills, Seyon Sivarajah, and Ross Duncan (2022), “Volumetric Benchmarking of Error Mitigation with Qermit,” arXiv:2204.09725 [quant-ph].
- Colless, J I, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E. Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. de Jong, and I. Siddiqi (2018), “Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm,” Physical Review X 8 (1), 011021.
- Conlon, Lorcán O, Tobias Vogl, Christian D. Marciniak, Ivan Pogorelov, Simon K. Yung, Falk Eilenberger, Dominic W. Berry, Fabiana S. Santana, Rainer Blatt, Thomas Monz, Ping Koy Lam, and Syed M. Assad (2023), “Approaching optimal entangling collective measurements on quantum computing platforms,” Nature Physics 19 (3), 351–357.
- Córcoles, A D, Easwar Magesan, Srikanth J. Srinivasan, Andrew W. Cross, M. Steffen, Jay M. Gambetta, and Jerry M. Chow (2015), “Demonstration of a quantum error detection code using a square lattice of four superconducting qubits,” Nature Communications 6, 6979.
- Czarnik, Piotr, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio (2021), “Error mitigation with Clifford quantum-circuit data,” Quantum 5, 592.
- Czarnik, Piotr, Michael McKerns, Andrew T. Sornborger, and Lukasz Cincio (2022), “Improving the efficiency of learning-based error mitigation,” arXiv:2204.07109 [quant-ph].
- Dawson, CM, and M.A. Nielsen (2006), “The Solovay-Kitaev algorithm,” Quantum Information and Computation 6 (1), 81–95.
- Dborin, James, Vinul Wimalaweera, F. Barratt, Eric Ostby, Thomas E. O’Brien, and A. G. Green (2022), “Simulating groundstate and dynamical quantum phase transitions on a superconducting quantum computer,” Nature Communications 13 (1), 5977.
- DePrince, A Eugene (2016), “Variational optimization of the two-electron reduced-density matrix under pure-state N-representability conditions,” The Journal of Chemical Physics 145 (16), 164109.
- Derby, Charles, and Joel Klassen (2021), “A Compact Fermion to Qubit Mapping Part 2: Alternative Lattice Geometries,” arXiv:2101.10735 [quant-ph].
- Dinur, Irit, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes (2022), “Locally testable codes with constant rate, distance, and locality,” in Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022 (Association for Computing Machinery, New York, NY, USA) pp. 357–374.
- Dumitrescu, E F, A. J. McCaskey, G. Hagen, G. R. Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean, and P. Lougovski (2018), “Cloud Quantum Computing of an Atomic Nucleus,” Physical Review Letters 120 (21), 210501.
- Eastin, Bryan, and Emanuel Knill (2009), “Restrictions on Transversal Encoded Quantum Gate Sets,” Physical Review Letters 102 (11), 10.1103/PhysRevLett.102.110502.
- Ebadi, Sepehr, Tout T. Wang, Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Dolev Bluvstein, Rhine Samajdar, Hannes Pichler, Wen Wei Ho, Soonwon Choi, Subir Sachdev, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin (2021), “Quantum phases of matter on a 256-atom programmable quantum simulator,” Nature 595 (7866), 227–232.
- Egan, Laird, Dripto M. Debroy, Crystal Noel, Andrew Risinger, Daiwei Zhu, Debopriyo Biswas, Michael Newman, Muyuan Li, Kenneth R. Brown, Marko Cetina, and Christopher Monroe (2021), “Fault-tolerant control of an error-corrected qubit,” Nature 598 (7880), 281–286.
- Eisert, Jens, Dominik Hangleiter, Nathan Walk, Ingo Roth, Damian Markham, Rhea Parekh, Ulysse Chabaud, and Elham Kashefi (2020), “Quantum certification and benchmarking,” Nature Reviews Physics 2 (7), 382–390.
- Endo, Suguru, Simon C. Benjamin, and Ying Li (2018), “Practical Quantum Error Mitigation for Near-Future Applications,” Physical Review X 8 (3), 031027.
- Endo, Suguru, Yasunari Suzuki, Kento Tsubouchi, Rui Asaoka, Kaoru Yamamoto, Yuichiro Matsuzaki, and Yuuki Tokunaga (2022), “Quantum error mitigation for rotation symmetric bosonic codes with symmetry expansion,” arXiv:2211.06164 [quant-ph].
- Endo, Suguru, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan (2019), “Mitigating algorithmic errors in a Hamiltonian simulation,” Physical Review A 99 (1), 012334.
- Facchi, P, D. A. Lidar, and S. Pascazio (2004), “Unification of dynamical decoupling and the quantum Zeno effect,” Physical Review A 69 (3), 032314.
- Farhi, Edward, Jeffrey Goldstone, and Sam Gutmann (2014), “A Quantum Approximate Optimization Algorithm,” arXiv:1411.4028 [quant-ph].
- Ferracin, Samuele, Akel Hashim, Jean-Loup Ville, Ravi Naik, Arnaud Carignan-Dugas, Hammam Qassim, Alexis Morvan, David I. Santiago, Irfan Siddiqi, and Joel J. Wallman (2022), “Efficiently improving the performance of noisy quantum computers,” arXiv:2201.10672 [quant-ph].
- Feynman, Richard P (1982), “Simulating physics with computers,” International Journal of Theoretical Physics 21 (6-7), 467–488.
- Foss-Feig, Michael, Stephen Ragole, Andrew Potter, Joan Dreiling, Caroline Figgatt, John Gaebler, Alex Hall, Steven Moses, Juan Pino, Ben Spaun, Brian Neyenhuis, and David Hayes (2022), “Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer,” Physical Review Letters 128 (15), 150504.
- Fuchs, CA, and J. van de Graaf (1999), “Cryptographic distinguishability measures for quantum-mechanical states,” IEEE Transactions on Information Theory 45 (4), 1216–1227.
- Geller, Michael R (2020), “Rigorous measurement error correction,” Quantum Science and Technology 5 (3), 03LT01.
- Gilchrist, Alexei, Daniel R. Terno, and Christopher J. Wood (2011), “Vectorization of quantum operations and its use,” arXiv:0911.2539 [quant-ph].
- Giurgica-Tiron, Tudor, Yousef Hindy, Ryan LaRose, Andrea Mari, and William J. Zeng (2020), “Digital zero noise extrapolation for quantum error mitigation,” in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 306–316.
- Google Quantum AI, (2023), “Suppressing quantum errors by scaling a surface code logical qubit,” Nature 614 (7949), 676–681.
- Google Quantum AI and Collaborators, (2020a), “Hartree-Fock on a superconducting qubit quantum computer,” Science 369 (6507), 1084–1089.
- Google Quantum AI and Collaborators, (2020b), “Observation of separated dynamics of charge and spin in the Fermi-Hubbard model,” arXiv:2010.07965 [quant-ph].
- Google Quantum AI and Collaborators, (2022), “Formation of robust bound states of interacting microwave photons,” Nature 612 (7939), 240–245.
- Gottesman, Daniel (2009), “An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation,” arXiv:0904.2557 [quant-ph].
- Gottesman, Daniel (2014), “Fault-Tolerant quantum computation with constant overhead,” Quantum Information and Computation 14 (15&16), 1339–1371.
- Gottesman, Daniel (2016), “Quantum fault tolerance in small experiments,” arXiv:1610.03507 [quant-ph].
- Gottesman, Daniel Eric (1997), Stabilizer Codes and Quantum Error Correction, Ph.D. thesis (California Institute of Technology).
- Gu, Yanwu, Yunheng Ma, Nicolo Forcellini, and Dong E. Liu (2022), “Noise-resilient phase estimation with randomized compiling,” arXiv:2208.04100 [quant-ph].
- Guo, Yuchen, and Shuo Yang (2022), “Quantum Error Mitigation via Matrix Product Operators,” PRX Quantum 3 (4), 040313.
- Guo, Yuchen, and Shuo Yang (2023), “Noise effects on purity and quantum entanglement in terms of physical implementability,” npj Quantum Information 9 (1), 1–7.
- Gutiérrez, Mauricio, and Kenneth R. Brown (2015), “Comparison of a quantum error-correction threshold for exact and approximate errors,” Physical Review A 91 (2), 022335.
- Hakoshima, Hideaki, Yuichiro Matsuzaki, and Suguru Endo (2021), “Relationship between costs for quantum error mitigation and non-Markovian measures,” Physical Review A 103 (1), 012611.
- Hama, Yusuke, and Hirofumi Nishi (2022), “Quantum Error Mitigation via Quantum-Noise-Effect Circuit Groups,” arXiv:2205.13907 [quant-ph].
- Hamilton, Kathleen E, Tyler Kharazi, Titus Morris, Alexander J. McCaskey, Ryan S. Bennink, and Raphael C. Pooser (2020), “Scalable quantum processor noise characterization,” in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 430–440.
- He, Andre, Benjamin Nachman, Wibe A. de Jong, and Christian W. Bauer (2020), “Zero-noise extrapolation for quantum-gate error mitigation with identity insertions,” Physical Review A 102 (1), 012426.
- Heinsoo, Johannes, Christian Kraglund Andersen, Ants Remm, Sebastian Krinner, Theodore Walter, Yves Salathé, Simone Gasparinetti, Jean-Claude Besse, Anton Potočnik, Andreas Wallraff, and Christopher Eichler (2018), “Rapid High-fidelity Multiplexed Readout of Superconducting Qubits,” Physical Review Applied 10 (3), 034040.
- Henao, Ivan, Jader P. Santos, and Raam Uzdin (2023), “Adaptive quantum error mitigation using pulse-based inverse evolutions,” arXiv:2303.05001 [quant-ph].
- Hicks, Rebecca, Bryce Kobrin, Christian W. Bauer, and Benjamin Nachman (2022), “Active readout-error mitigation,” Physical Review A 105 (1), 012419.
- Hu, Hong-Ye, Ryan LaRose, Yi-Zhuang You, Eleanor Rieffel, and Zhihui Wang (2022), “Logical shadow tomography: Efficient estimation of error-mitigated observables,” arXiv:2203.07263 [quant-ph].
- Huang, Hsin-Yuan, Richard Kueng, and John Preskill (2020), “Predicting many properties of a quantum system from very few measurements,” Nature Physics 16 (10), 1050–1057.
- Huggins, William J, Sam McArdle, Thomas E. O’Brien, Joonho Lee, Nicholas C. Rubin, Sergio Boixo, K. Birgitta Whaley, Ryan Babbush, and Jarrod R. McClean (2021a), “Virtual Distillation for Quantum Error Mitigation,” Physical Review X 11 (4), 041036.
- Huggins, William J, Jarrod R. McClean, Nicholas C. Rubin, Zhang Jiang, Nathan Wiebe, K. Birgitta Whaley, and Ryan Babbush (2021b), “Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers,” npj Quantum Information 7, 23.
- Huo, Mingxia, and Ying Li (2022), “Dual-state purification for practical quantum error mitigation,” Physical Review A 105 (2), 022427.
- Jiang, Jiaqing, Kun Wang, and Xin Wang (2021), “Physical Implementability of Linear Maps and Its Application in Error Mitigation,” Quantum 5, 600.
- Jiang, Zhang, Jarrod McClean, Ryan Babbush, and Hartmut Neven (2019), “Majorana Loop Stabilizer Codes for Error Mitigation in Fermionic Quantum Simulations,” Physical Review Applied 12 (6), 064041.
- Jnane, Hamza, Jonathan Steinberg, Zhenyu Cai, H. Chau Nguyen, and Bálint Koczor (2023), “Quantum Error Mitigated Classical Shadows,” arXiv:2305.04956 [quant-ph].
- Jurcevic, Petar, Ali Javadi-Abhari, Lev S. Bishop, Isaac Lauer, Daniela F. Bogorin, Markus Brink, Lauren Capelluto, Oktay Günlük, Toshinari Itoko, Naoki Kanazawa, Abhinav Kandala, George A. Keefe, Kevin Krsulich, William Landers, Eric P. Lewandowski, Douglas T. McClure, Giacomo Nannicini, Adinath Narasgond, Hasan M. Nayfeh, Emily Pritchett, Mary Beth Rothwell, Srikanth Srinivasan, Neereja Sundaresan, Cindy Wang, Ken X. Wei, Christopher J. Wood, Jeng-Bang Yau, Eric J. Zhang, Oliver E. Dial, Jerry M. Chow, and Jay M. Gambetta (2021), “Demonstration of quantum volume 64 on a superconducting quantum computing system,” Quantum Science and Technology 6 (2), 025020.
- Kandala, Abhinav, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta (2017), “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,” Nature 549 (7671), 242–246.
- Kastoryano, Michael J, and Kristan Temme (2013), “Quantum logarithmic Sobolev inequalities and rapid mixing,” Journal of Mathematical Physics 54 (5), 052202.
- Kelly, J, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and John M. Martinis (2015), “State preservation by repetitive error detection in a superconducting quantum circuit,” Nature 519 (7541), 66–69.
- Khamoshi, Armin, Francesco A. Evangelista, and Gustavo E. Scuseria (2020), “Correlating AGP on a quantum computer,” Quantum Science and Technology 6 (1), 014004.
- Kim, Youngseok, Andrew Eddins, Sajant Anand, Ken Xuan Wei, Ewout van den Berg, Sami Rosenblatt, Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme, and Abhinav Kandala (2023a), “Evidence for the utility of quantum computing before fault tolerance,” Nature 618 (7965), 500–505.
- Kim, Youngseok, Christopher J. Wood, Theodore J. Yoder, Seth T. Merkel, Jay M. Gambetta, Kristan Temme, and Abhinav Kandala (2023b), “Scalable error mitigation for noisy quantum circuits produces competitive expectation values,” Nature Physics , 1–8.
- Kitaev, A Yu (1997), “Quantum computations: Algorithms and error correction,” Russian Mathematical Surveys 52 (6), 1191.
- Kivlichan, Ian D, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler, Alán Aspuru-Guzik, Hartmut Neven, and Ryan Babbush (2020), “Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization,” Quantum 4, 296.
- Klco, N, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski, and M. J. Savage (2018), “Quantum-classical computation of Schwinger model dynamics using quantum computers,” Physical Review A 98 (3), 032331.
- Kliesch, Martin, and Ingo Roth (2021), “Theory of Quantum System Certification,” PRX Quantum 2 (1), 010201.
- Kliuchnikov, Vadym, Dmitri Maslov, and Michele Mosca (2013), “Asymptotically Optimal Approximation of Single Qubit Unitaries by Clifford and $T$ Circuits Using a Constant Number of Ancillary Qubits,” Physical Review Letters 110 (19), 190502.
- Klyachko, Alexander A (2006), “Quantum marginal problem and N-representability,” Journal of Physics: Conference Series 36, 72–86.
- Knill, E (2004), “Fault-Tolerant Postselected Quantum Computation: Threshold Analysis,” arXiv:quant-ph/0404104.
- Koczor, Bálint (2021a), “The dominant eigenvector of a noisy quantum state,” New Journal of Physics 23 (12), 123047.
- Koczor, Bálint (2021b), “Exponential Error Suppression for Near-Term Quantum Devices,” Physical Review X 11 (3), 031057.
- Krebsbach, Michael, Björn Trauzettel, and Alessio Calzona (2022), “Optimization of Richardson extrapolation for quantum error mitigation,” Physical Review A 106 (6), 062436.
- Krinner, Sebastian, Nathan Lacroix, Ants Remm, Agustin Di Paolo, Elie Genois, Catherine Leroux, Christoph Hellings, Stefania Lazar, Francois Swiadek, Johannes Herrmann, Graham J. Norris, Christian Kraglund Andersen, Markus Müller, Alexandre Blais, Christopher Eichler, and Andreas Wallraff (2022), “Realizing repeated quantum error correction in a distance-three surface code,” Nature 605 (7911), 669–674.
- Kueng, Richard, David M. Long, Andrew C. Doherty, and Steven T. Flammia (2016), “Comparing Experiments to the Fault-Tolerance Threshold,” Physical Review Letters 117 (17), 170502.
- Kwon, Hyeokjea, and Joonwoo Bae (2021), “A Hybrid Quantum-Classical Approach to Mitigating Measurement Errors in Quantum Algorithms,” IEEE Transactions on Computers 70 (09), 1401–1411.
- LaRose, Ryan, Andrea Mari, Sarah Kaiser, Peter Karalekas, Andre Alves, Piotr Czarnik, Mohamed El Mandouh, Max Gordon, Yousef Hindy, Aaron Robertson, Purva Thakre, Nathan Shammah, and William Zeng (2021), “Mitiq: A software package for error mitigation on noisy quantum computers,” .
- Le Cam, Lucien (1960), “An approximation theorem for the Poisson binomial distribution,” Pacific Journal of Mathematics 10 (4), 1181–1197.
- Li, Ying, and Simon C. Benjamin (2017), “Efficient Variational Quantum Simulator Incorporating Active Error Minimization,” Physical Review X 7 (2), 021050.
- Lidar, Daniel A (2014), “Review of Decoherence-Free Subspaces, Noiseless Subsystems, and Dynamical Decoupling,” in Quantum Information and Computation for Chemistry (John Wiley & Sons, Ltd) pp. 295–354.
- Lidar, Daniel A, and Todd A. Brun (2013), “Introduction to decoherence and noise in open quantum systems,” in Quantum Error Correction, edited by Daniel A. Lidar and Todd A. Brun (Cambridge University Press, Cambridge) pp. 3–45.
- Lin, Junan, Joel J. Wallman, Ian Hincks, and Raymond Laflamme (2021), “Independent state and measurement characterization for quantum computers,” Physical Review Research 3 (3), 033285.
- Linke, Norbert M, Mauricio Gutierrez, Kevin A. Landsman, Caroline Figgatt, Shantanu Debnath, Kenneth R. Brown, and Christopher Monroe (2017), “Fault-tolerant quantum error detection,” Science Advances 3 (10), e1701074.
- Litinski, Daniel (2019), ‘‘Magic State Distillation: Not as Costly as You Think,” Quantum 3, 205.
- Liu, Yi-Kai, Matthias Christandl, and F. Verstraete (2007), “Quantum Computational Complexity of the $N$-Representability Problem: QMA Complete,” Physical Review Letters 98 (11), 110503.
- Lloyd, Seth, Masoud Mohseni, and Patrick Rebentrost (2014), “Quantum principal component analysis,” Nature Physics 10 (9), 631–633.
- Lostaglio, M, and A. Ciani (2021), “Error Mitigation and Quantum-Assisted Simulation in the Error Corrected Regime,” Physical Review Letters 127 (20), 200506.
- Lowe, Angus, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio (2021), “Unified approach to data-driven quantum error mitigation,” Physical Review Research 3 (3), 033098.
- Lu, Sirui, Mari Carmen Bañuls, and J. Ignacio Cirac (2021), “Algorithms for Quantum Simulation at Finite Energies,” PRX Quantum 2 (2), 020321.
- Maciejewski, Filip B, Tomasz Rybotycki, Oskar Slowik, and Jan Tuziemski (2020a), “Quantum Readout Errors Mitigation (QREM) – open source GitHub repository,” .
- Maciejewski, Filip B, Zoltán Zimborás, and Michał Oszmaniec (2020b), “Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography,” Quantum 4, 257.
- Madjarov, Ivaylo S, Jacob P. Covey, Adam L. Shaw, Joonhee Choi, Anant Kale, Alexandre Cooper, Hannes Pichler, Vladimir Schkolnik, Jason R. Williams, and Manuel Endres (2020), “High-fidelity entanglement and detection of alkaline-earth Rydberg atoms,” Nature Physics 16 (8), 857–861.
- Mari, Andrea, Nathan Shammah, and William J. Zeng (2021), “Extending quantum probabilistic error cancellation by noise scaling,” Physical Review A 104 (5), 052607.
- Mazziotti, David A (2016), “Pure-$N$-representability conditions of two-fermion reduced density matrices,” Physical Review A 94 (3), 032516.
- McArdle, Sam, Xiao Yuan, and Simon Benjamin (2019), “Error-Mitigated Digital Quantum Simulation,” Physical Review Letters 122 (18), 180501.
- McCaskey, Alexander J, Zachary P. Parks, Jacek Jakowski, Shirley V. Moore, Titus D. Morris, Travis S. Humble, and Raphael C. Pooser (2019), “Quantum chemistry as a benchmark for near-term quantum computers,” npj Quantum Information 5, 99.
- McClean, Jarrod R, Zhang Jiang, Nicholas C. Rubin, Ryan Babbush, and Hartmut Neven (2020), “Decoding quantum errors with subspace expansions,” Nature Communications 11, 636.
- McClean, Jarrod R, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik (2016), “The theory of variational hybrid quantum-classical algorithms,” New Journal of Physics 18 (2), 023023.
- McWeeny, R (1960), “Some Recent Advances in Density Matrix Theory,” Reviews of Modern Physics 32 (2), 335–369.
- Merkel, Seth T, Jay M. Gambetta, John A. Smolin, Stefano Poletto, Antonio D. Córcoles, Blake R. Johnson, Colm A. Ryan, and Matthias Steffen (2013), “Self-consistent quantum process tomography,” Physical Review A 87 (6), 062119.
- Mi, Xiao, Pedram Roushan, Chris Quintana, Salvatore Mandrà, Jeffrey Marshall, Charles Neill, Frank Arute, Kunal Arya, Juan Atalaya, Ryan Babbush, Joseph C. Bardin, Rami Barends, Joao Basso, Andreas Bengtsson, Sergio Boixo, Alexandre Bourassa, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Zijun Chen, Benjamin Chiaro, Roberto Collins, William Courtney, Sean Demura, Alan R. Derk, Andrew Dunsworth, Daniel Eppens, Catherine Erickson, Edward Farhi, Austin G. Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Jonathan A. Gross, Matthew P. Harrigan, Sean D. Harrington, Jeremy Hilton, Alan Ho, Sabrina Hong, Trent Huang, William J. Huggins, L. B. Ioffe, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Julian Kelly, Seon Kim, Alexei Kitaev, Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Erik Lucero, Orion Martin, Jarrod R. McClean, Trevor McCourt, Matt McEwen, Anthony Megrant, Kevin C. Miao, Masoud Mohseni, Shirin Montazeri, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Michael Newman, Murphy Yuezhen Niu, Thomas E. O’Brien, Alex Opremcak, Eric Ostby, Balint Pato, Andre Petukhov, Nicholas Redd, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vladimir Shvarts, Doug Strain, Marco Szalay, Matthew D. Trevithick, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, Igor Aleiner, Kostyantyn Kechedzhi, Vadim Smelyanskiy, and Yu Chen (2021), “Information scrambling in quantum circuits,” Science 374 (6574), 1479–1483.
- Mitarai, Kosuke, and Keisuke Fujii (2019), “Methodology for replacing indirect measurements with direct measurements,” Physical Review Research 1 (1), 013006.
- Montanaro, Ashley, and Stasja Stanisic (2021), “Error mitigation by training with fermionic linear optics,” arXiv:2102.02120 [quant-ph].
- Motta, Mario, Chong Sun, Adrian T. K. Tan, Matthew J. O’Rourke, Erika Ye, Austin J. Minnich, Fernando G. S. L. Brandão, and Garnet Kin-Lic Chan (2020), “Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution,” Nature Physics 16 (2), 205–210.
- Nachman, Benjamin, Miroslav Urbanek, Wibe A. de Jong, and Christian W. Bauer (2020), “Unfolding quantum computer readout noise,” npj Quantum Information 6, 84.
- Nagourney, Warren, Jon Sandberg, and Hans Dehmelt (1986), “Shelved optical electron amplifier: Observation of quantum jumps,” Physical Review Letters 56 (26), 2797–2799.
- Nation, Paul D, Hwajung Kang, Neereja Sundaresan, and Jay M. Gambetta (2021), “Scalable Mitigation of Measurement Errors on Quantum Computers,” PRX Quantum 2 (4), 040326.
- Neill, C, T. McCourt, X. Mi, Z. Jiang, M. Y. Niu, W. Mruczkiewicz, I. Aleiner, F. Arute, K. Arya, J. Atalaya, R. Babbush, J. C. Bardin, R. Barends, A. Bengtsson, A. Bourassa, M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett, N. Bushnell, J. Campero, Z. Chen, B. Chiaro, R. Collins, W. Courtney, S. Demura, A. R. Derk, A. Dunsworth, D. Eppens, C. Erickson, E. Farhi, A. G. Fowler, B. Foxen, C. Gidney, M. Giustina, J. A. Gross, M. P. Harrigan, S. D. Harrington, J. Hilton, A. Ho, S. Hong, T. Huang, W. J. Huggins, S. V. Isakov, M. Jacob-Mitos, E. Jeffrey, C. Jones, D. Kafri, K. Kechedzhi, J. Kelly, S. Kim, P. V. Klimov, A. N. Korotkov, F. Kostritsa, D. Landhuis, P. Laptev, E. Lucero, O. Martin, J. R. McClean, M. McEwen, A. Megrant, K. C. Miao, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, M. Newman, T. E. O’Brien, A. Opremcak, E. Ostby, B. Pató, A. Petukhov, C. Quintana, N. Redd, N. C. Rubin, D. Sank, K. J. Satzinger, V. Shvarts, D. Strain, M. Szalay, M. D. Trevithick, B. Villalonga, T. C. White, Z. Yao, P. Yeh, A. Zalcman, H. Neven, S. Boixo, L. B. Ioffe, P. Roushan, Y. Chen, and V. Smelyanskiy (2021), “Accurately computing the electronic properties of a quantum ring,” Nature 594 (7864), 508–512.
- Nigg, D, M. Müller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A. Martin-Delgado, and R. Blatt (2014), “Quantum computations on a topologically encoded qubit,” Science 345 (6194), 302–305.
- O’Brien, T E, G. Anselmetti, F. Gkritsis, V. E. Elfving, S. Polla, W. J. Huggins, O. Oumarou, K. Kechedzhi, D. Abanin, R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, K. Anderson, M. Ansmann, F. Arute, K. Arya, A. Asfaw, J. Atalaya, D. Bacon, J. C. Bardin, A. Bengtsson, S. Boixo, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, B. Buckley, D. A. Buell, T. Burger, B. Burkett, N. Bushnell, J. Campero, Y. Chen, Z. Chen, B. Chiaro, D. Chik, J. Cogan, R. Collins, P. Conner, W. Courtney, A. L. Crook, B. Curtin, D. M. Debroy, S. Demura, I. Drozdov, A. Dunsworth, C. Erickson, L. Faoro, E. Farhi, R. Fatemi, V. S. Ferreira, L. Flores Burgos, E. Forati, A. G. Fowler, B. Foxen, W. Giang, C. Gidney, D. Gilboa, M. Giustina, R. Gosula, A. Grajales Dau, J. A. Gross, S. Habegger, M. C. Hamilton, M. Hansen, M. P. Harrigan, S. D. Harrington, P. Heu, J. Hilton, M. R. Hoffmann, S. Hong, T. Huang, A. Huff, L. B. Ioffe, S. V. Isakov, J. Iveland, E. Jeffrey, Z. Jiang, C. Jones, P. Juhas, D. Kafri, J. Kelly, T. Khattar, M. Khezri, M. Kieferová, S. Kim, P. V. Klimov, A. R. Klots, R. Kothari, A. N. Korotkov, F. Kostritsa, J. M. Kreikebaum, D. Landhuis, P. Laptev, K. Lau, L. Laws, J. Lee, K. Lee, B. J. Lester, A. T. Lill, W. Liu, W. P. Livingston, A. Locharla, E. Lucero, F. D. Malone, S. Mandra, O. Martin, S. Martin, J. R. McClean, T. McCourt, M. McEwen, A. Megrant, X. Mi, A. Mieszala, K. C. Miao, M. Mohseni, S. Montazeri, A. Morvan, R. Movassagh, W. Mruczkiewicz, O. Naaman, M. Neeley, C. Neill, A. Nersisyan, H. Neven, M. Newman, J. H. Ng, A. Nguyen, M. Nguyen, M. Y. Niu, S. Omonije, A. Opremcak, A. Petukhov, R. Potter, L. P. Pryadko, C. Quintana, C. Rocque, P. Roushan, N. Saei, D. Sank, K. Sankaragomathi, K. J. Satzinger, H. F. Schurkus, C. Schuster, M. J. Shearn, A. Shorter, N. Shutty, V. Shvarts, J. Skruzny, V. Smelyanskiy, W. C. Smith, R. Somma, G. Sterling, D. Strain, M. Szalay, D. Thor, A. Torres, G. Vidal, B. Villalonga, C. Vollgraff Heidweiller, T. White, B. W. K. Woo, C. Xing, Z. J. Yao, P. Yeh, J. Yoo, G. Young, A. Zalcman, Y. Zhang, N. Zhu, N. Zobrist, C. Gogolin, R. Babbush, and N. C. Rubin (2022), “Purification-based quantum error mitigation of pair-correlated electron simulations,” arXiv:2210.10799 [quant-ph].
- O’Brien, Thomas E, Stefano Polla, Nicholas C. Rubin, William J. Huggins, Sam McArdle, Sergio Boixo, Jarrod R. McClean, and Ryan Babbush (2021), “Error Mitigation via Verified Phase Estimation,” PRX Quantum 2 (2), 020317.
- O’Gorman, Joe, and Earl T. Campbell (2017), “Quantum computation with realistic magic-state factories,” Physical Review A 95 (3), 032338.
- Otten, Matthew, and Stephen K. Gray (2019), “Accounting for errors in quantum algorithms via individual error reduction,” npj Quantum Information 5, 11.
- Ouyang, Yingkai, David R. White, and Earl T. Campbell (2020), “Compilation by stochastic Hamiltonian sparsification,” Quantum 4, 235.
- Palmieri, Adriano Macarone, Egor Kovlakov, Federico Bianchi, Dmitry Yudin, Stanislav Straupe, Jacob D. Biamonte, and Sergei Kulik (2020), “Experimental neural network enhanced quantum tomography,” npj Quantum Information 6, 20.
- Panteleev, Pavel, and Gleb Kalachev (2022), “Asymptotically good Quantum and locally testable classical LDPC codes,” in Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022 (Association for Computing Machinery, New York, NY, USA) pp. 375–388.
- Peruzzo, Alberto, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien (2014), “A variational eigenvalue solver on a photonic quantum processor,” Nature Communications 5, 4213.
- Piveteau, Christophe, David Sutter, Sergey Bravyi, Jay M. Gambetta, and Kristan Temme (2021), “Error Mitigation for Universal Gates on Encoded Qubits,” Physical Review Letters 127 (20), 200505.
- Piveteau, Christophe, David Sutter, and Stefan Woerner (2022), “Quasiprobability decompositions with reduced sampling overhead,” npj Quantum Information 8, 12.
- Polla, Stefano, Gian-Luca R. Anselmetti, and Thomas E. O’Brien (2022), “Optimizing the information extracted by a single qubit measurement,” arXiv:2207.09479 [quant-ph].
- Postler, Lukas, Sascha Heuβ𝛽\betaitalic_βen, Ivan Pogorelov, Manuel Rispler, Thomas Feldker, Michael Meth, Christian D. Marciniak, Roman Stricker, Martin Ringbauer, Rainer Blatt, Philipp Schindler, Markus Müller, and Thomas Monz (2022), “Demonstration of fault-tolerant universal quantum gate operations,” Nature 605 (7911), 675–680.
- Qin, Dayue, Yanzhu Chen, and Ying Li (2023), “Error statistics and scalability of quantum error mitigation formulas,” npj Quantum Information 9 (1), 1–14.
- Qiskit contributors, (2023), “Qiskit: An Open-source Framework for Quantum Computing,” Zenodo.
- Quek, Yihui, Daniel Stilck França, Sumeet Khatri, Johannes Jakob Meyer, and Jens Eisert (2022), “Exponentially tighter bounds on limitations of quantum error mitigation,” arXiv:2210.11505 [math-ph, physics:quant-ph].
- Regula, Bartosz, Ryuji Takagi, and Mile Gu (2021), “Operational applications of the diamond norm and related measures in quantifying the non-physicality of quantum maps,” Quantum 5, 522.
- Rosenberg, Eliott, Paul Ginsparg, and Peter L. McMahon (2022), “Experimental error mitigation using linear rescaling for variational quantum eigensolving with up to 20 qubits,” Quantum Science and Technology 7 (1), 015024.
- Ross, Neil J, and Peter Selinger (2016), “Optimal ancilla-free Clifford+T approximation of z-rotations,” Quantum Information & Computation 16 (11-12), 901–953.
- Rubin, Nicholas C, Ryan Babbush, and Jarrod McClean (2018), “Application of fermionic marginal constraints to hybrid quantum algorithms,” New Journal of Physics 20 (5), 053020.
- Russo, A E, K. M. Rudinger, B. C. A. Morrison, and A. D. Baczewski (2021), “Evaluating Energy Differences on a Quantum Computer with Robust Phase Estimation,” Physical Review Letters 126 (21), 210501.
- Ryan-Anderson, C, N. C. Brown, M. S. Allman, B. Arkin, G. Asa-Attuah, C. Baldwin, J. Berg, J. G. Bohnet, S. Braxton, N. Burdick, J. P. Campora, A. Chernoguzov, J. Esposito, B. Evans, D. Francois, J. P. Gaebler, T. M. Gatterman, J. Gerber, K. Gilmore, D. Gresh, A. Hall, A. Hankin, J. Hostetter, D. Lucchetti, K. Mayer, J. Myers, B. Neyenhuis, J. Santiago, J. Sedlacek, T. Skripka, A. Slattery, R. P. Stutz, J. Tait, R. Tobey, G. Vittorini, J. Walker, and D. Hayes (2022), “Implementing Fault-tolerant Entangling Gates on the Five-qubit Code and the Color Code,” arXiv:2208.01863 [quant-ph].
- Sagastizabal, R, X. Bonet-Monroig, M. Singh, M. A. Rol, C. C. Bultink, X. Fu, C. H. Price, V. P. Ostroukh, N. Muthusubramanian, A. Bruno, M. Beekman, N. Haider, T. E. O’Brien, and L. DiCarlo (2019), “Experimental error mitigation via symmetry verification in a variational quantum eigensolver,” Physical Review A 100 (1), 010302.
- Sanders, Yuval R, Joel J. Wallman, and Barry C. Sanders (2015), “Bounding quantum gate error rate based on reported average fidelity,” New Journal of Physics 18 (1), 012002.
- Sauter, Th, W. Neuhauser, R. Blatt, and P. E. Toschek (1986), “Observation of Quantum Jumps,” Physical Review Letters 57 (14), 1696–1698.
- Seif, Alireza, Ze-Pei Cian, Sisi Zhou, Senrui Chen, and Liang Jiang (2023), “Shadow Distillation: Quantum Error Mitigation with Classical Shadows for Near-Term Quantum Processors,” PRX Quantum 4 (1), 010303.
- Setia, Kanav, Sergey Bravyi, Antonio Mezzacapo, and James D. Whitfield (2019), “Superfast encodings for fermionic quantum simulation,” Physical Review Research 1 (3), 033033.
- Setia, Kanav, and James D. Whitfield (2018), “Bravyi-Kitaev Superfast simulation of fermions on a quantum computer,” The Journal of Chemical Physics 148 (16), 164104.
- Shor, P (1999), “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,” SIAM Review 41 (2), 303–332.
- Shor, Peter W (1995), “Scheme for reducing decoherence in quantum computer memory,” Physical Review A 52 (4), R2493–R2496.
- Shor, PW (1996), “Fault-tolerant quantum computation,” in Proceedings of 37th Conference on Foundations of Computer Science, pp. 56–65.
- Sidi, Avram (2003), Practical Extrapolation Methods: Theory and Applications, Cambridge Monographs on Applied and Computational Mathematics (Cambridge University Press, Cambridge).
- Smart, Scott E, and David A. Mazziotti (2019), “Quantum-classical hybrid algorithm using an error-mitigating $N$-representability condition to compute the Mott metal-insulator transition,” Physical Review A 100 (2), 022517.
- Smart, Scott E, and David A. Mazziotti (2020), “Efficient two-electron ansatz for benchmarking quantum chemistry on a quantum computer,” Physical Review Research 2 (2), 023048.
- Song, Chao, Jing Cui, H. Wang, J. Hao, H. Feng, and Ying Li (2019), “Quantum computation with universal error mitigation on a superconducting quantum processor,” Science Advances 5 (9), eaaw5686.
- Stanisic, Stasja, Jan Lukas Bosse, Filippo Maria Gambetta, Raul A. Santos, Wojciech Mruczkiewicz, Thomas E. O’Brien, Eric Ostby, and Ashley Montanaro (2022), “Observing ground-state properties of the Fermi-Hubbard model using a scalable algorithm on a quantum computer,” Nature Communications 13 (1), 5743.
- Steane, A M (1996), “Error Correcting Codes in Quantum Theory,” Physical Review Letters 77 (5), 793–797.
- Steudtner, Mark, and Stephanie Wehner (2019), “Quantum codes for quantum simulation of fermions on a square lattice of qubits,” Physical Review A 99 (2), 022308.
- Strikis, Armands, Dayue Qin, Yanzhu Chen, Simon C. Benjamin, and Ying Li (2021), “Learning-Based Quantum Error Mitigation,” PRX Quantum 2 (4), 040330.
- Suchsland, Philippe, Francesco Tacchino, Mark H. Fischer, Titus Neupert, Panagiotis Kl Barkoutsos, and Ivano Tavernelli (2021), “Algorithmic Error Mitigation Scheme for Current Quantum Processors,” Quantum 5, 492.
- Sun, Jinzhao, Xiao Yuan, Takahiro Tsunoda, Vlatko Vedral, Simon C. Benjamin, and Suguru Endo (2021), “Mitigating Realistic Noise in Practical Noisy Intermediate-Scale Quantum Devices,” Physical Review Applied 15 (3), 034026.
- Suter, Dieter, and Gonzalo A. Álvarez (2016), “Colloquium: Protecting quantum information against environmental noise,” Reviews of Modern Physics 88 (4), 041001.
- Suzuki, Masuo (1990), “Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations,” Physics Letters A 146 (6), 319–323.
- Suzuki, Masuo (1991), “General theory of fractal path integrals with applications to many-body theories and statistical physics,” Journal of Mathematical Physics 32 (2), 400–407.
- Suzuki, Yasunari, Suguru Endo, Keisuke Fujii, and Yuuki Tokunaga (2022), “Quantum Error Mitigation as a Universal Error Reduction Technique: Applications from the NISQ to the Fault-Tolerant Quantum Computing Eras,” PRX Quantum 3 (1), 010345.
- Tacchino, Francesco, Panagiotis Barkoutsos, Chiara Macchiavello, Ivano Tavernelli, Dario Gerace, and Daniele Bajoni (2020), “Quantum implementation of an artificial feed-forward neural network,” Quantum Science and Technology 5 (4), 044010.
- Takagi, Ryuji (2021), “Optimal resource cost for error mitigation,” Physical Review Research 3 (3), 033178.
- Takagi, Ryuji, Suguru Endo, Shintaro Minagawa, and Mile Gu (2022a), “Fundamental limits of quantum error mitigation,” npj Quantum Information 8, 114.
- Takagi, Ryuji, Hiroyasu Tajima, and Mile Gu (2022b), “Universal sample lower bounds for quantum error mitigation,” arXiv:2208.09178 [quant-ph].
- Takeda, Kenta, Akito Noiri, Takashi Nakajima, Takashi Kobayashi, and Seigo Tarucha (2022), “Quantum error correction with silicon spin qubits,” Nature 608 (7924), 682–686.
- Takeshita, Tyler, Nicholas C. Rubin, Zhang Jiang, Eunseok Lee, Ryan Babbush, and Jarrod R. McClean (2020), “Increasing the Representation Accuracy of Quantum Simulations of Chemistry without Extra Quantum Resources,” Physical Review X 10 (1), 011004.
- Temme, Kristan, Sergey Bravyi, and Jay M. Gambetta (2017), “Error Mitigation for Short-Depth Quantum Circuits,” Physical Review Letters 119 (18), 180509.
- Terhal, Barbara M (2015), ‘‘Quantum error correction for quantum memories,” Reviews of Modern Physics 87 (2), 307–346.
- Tran, Minh C, Yuan Su, Daniel Carney, and Jacob M. Taylor (2021), “Faster Digital Quantum Simulation by Symmetry Protection,” PRX Quantum 2 (1), 010323.
- Tsubouchi, Kento, Takahiro Sagawa, and Nobuyuki Yoshioka (2022), “Universal cost bound of quantum error mitigation based on quantum estimation theory,” arXiv:2208.09385 [quant-ph].
- Tsubouchi, Kento, Yasunari Suzuki, Yuuki Tokunaga, Nobuyuki Yoshioka, and Suguru Endo (2023), “Virtual quantum error detection,” arXiv:2302.02626 [quant-ph].
- Unruh, W G (1995), “Maintaining coherence in quantum computers,” Physical Review A 51 (2), 992–997.
- Urbanek, Miroslav, Daan Camps, Roel Van Beeumen, and Wibe A. de Jong (2020), “Chemistry on Quantum Computers with Virtual Quantum Subspace Expansion,” Journal of Chemical Theory and Computation 16 (9), 5425–5431.
- Urbanek, Miroslav, Benjamin Nachman, Vincent R. Pascuzzi, Andre He, Christian W. Bauer, and Wibe A. de Jong (2021), “Mitigating Depolarizing Noise on Quantum Computers with Noise-Estimation Circuits,” Physical Review Letters 127 (27), 270502.
- van den Berg, Ewout, Zlatko K. Minev, Abhinav Kandala, and Kristan Temme (2023), “Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors,” Nature Physics , 1–6.
- van den Berg, Ewout, Zlatko K. Minev, and Kristan Temme (2022), “Model-free readout-error mitigation for quantum expectation values,” Physical Review A 105 (3), 032620.
- Vazquez, Almudena Carrera, Ralf Hiptmair, and Stefan Woerner (2022), “Enhancing the Quantum Linear Systems Algorithm Using Richardson Extrapolation,” ACM Transactions on Quantum Computing 3 (1), 2:1–2:37.
- Vovrosh, Joseph, Kiran E. Khosla, Sean Greenaway, Christopher Self, M. S. Kim, and Johannes Knolle (2021), “Simple mitigation of global depolarizing errors in quantum simulations,” Physical Review E 104 (3), 035309.
- Vuillot, Christophe (2018), “Is error detection helpful on IBM 5Q chips?” Quantum Information and Computation 18 (11&12), 949–964.
- Wallman, Joel, Chris Granade, Robin Harper, and Steven T. Flammia (2015), “Estimating the coherence of noise,” New Journal of Physics 17 (11), 113020.
- Wallman, Joel J, and Joseph Emerson (2016), “Noise tailoring for scalable quantum computation via randomized compiling,” Physical Review A 94 (5), 052325.
- Wallraff, A, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf (2004), “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431 (7005), 162–167.
- Wang, Samson, Piotr Czarnik, Andrew Arrasmith, M. Cerezo, Lukasz Cincio, and Patrick J. Coles (2021a), “Can Error Mitigation Improve Trainability of Noisy Variational Quantum Algorithms?” arXiv:2109.01051 [quant-ph].
- Wang, Samson, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone, Lukasz Cincio, and Patrick J. Coles (2021b), “Noise-induced barren plateaus in variational quantum algorithms,” Nature Communications 12, 6961.
- Wang, Zhen, Yanzhu Chen, Zixuan Song, Dayue Qin, Hekang Li, Qiujiang Guo, H. Wang, Chao Song, and Ying Li (2021c), “Scalable Evaluation of Quantum-Circuit Error Loss Using Clifford Sampling,” Physical Review Letters 126 (8), 080501.
- Watanabe, Yu, Takahiro Sagawa, and Masahito Ueda (2010), “Optimal Measurement on Noisy Quantum Systems,” Physical Review Letters 104 (2), 020401.
- Wecker, Dave, Matthew B. Hastings, and Matthias Troyer (2015), “Progress towards practical quantum variational algorithms,” Physical Review A 92 (4), 042303.
- Wu, Yulin, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen, Tung-Hsun Chung, Hui Deng, Yajie Du, Daojin Fan, Ming Gong, Cheng Guo, Chu Guo, Shaojun Guo, Lianchen Han, Linyin Hong, He-Liang Huang, Yong-Heng Huo, Liping Li, Na Li, Shaowei Li, Yuan Li, Futian Liang, Chun Lin, Jin Lin, Haoran Qian, Dan Qiao, Hao Rong, Hong Su, Lihua Sun, Liangyuan Wang, Shiyu Wang, Dachao Wu, Yu Xu, Kai Yan, Weifeng Yang, Yang Yang, Yangsen Ye, Jianghan Yin, Chong Ying, Jiale Yu, Chen Zha, Cha Zhang, Haibin Zhang, Kaili Zhang, Yiming Zhang, Han Zhao, Youwei Zhao, Liang Zhou, Qingling Zhu, Chao-Yang Lu, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan (2021), “Strong Quantum Computational Advantage Using a Superconducting Quantum Processor,” Physical Review Letters 127 (18), 180501.
- Xue, Xiao, Maximilian Russ, Nodar Samkharadze, Brennan Undseth, Amir Sammak, Giordano Scappucci, and Lieven M. K. Vandersypen (2022), “Quantum logic with spin qubits crossing the surface code threshold,” Nature 601 (7893), 343–347.
- Yamamoto, Kaoru, Suguru Endo, Hideaki Hakoshima, Yuichiro Matsuzaki, and Yuuki Tokunaga (2022), “Error-Mitigated Quantum Metrology via Virtual Purification,” Physical Review Letters 129 (25), 250503.
- Yang, Yongdan, Bing-Nan Lu, and Ying Li (2021), “Accelerated Quantum Monte Carlo with Mitigated Error on Noisy Quantum Computer,” PRX Quantum 2 (4), 040361.
- Yen, Tzu-Ching, Robert A. Lang, and Artur F. Izmaylov (2019), “Exact and approximate symmetry projectors for the electronic structure problem on a quantum computer,” The Journal of Chemical Physics 151 (16), 164111.
- Yeter-Aydeniz, Kübra, Raphael C. Pooser, and George Siopsis (2020), “Practical quantum computation of chemical and nuclear energy levels using quantum imaginary time evolution and Lanczos algorithms,” npj Quantum Information 6, 63.
- Yoshioka, Nobuyuki, Hideaki Hakoshima, Yuichiro Matsuzaki, Yuuki Tokunaga, Yasunari Suzuki, and Suguru Endo (2022), “Generalized Quantum Subspace Expansion,” Physical Review Letters 129 (2), 020502.
- Zhang, Shuaining, Yao Lu, Kuan Zhang, Wentao Chen, Ying Li, Jing-Ning Zhang, and Kihwan Kim (2020), “Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system,” Nature Communications 11, 587.
- Zhu, D, S. Johri, N. M. Linke, K. A. Landsman, C. Huerta Alderete, N. H. Nguyen, A. Y. Matsuura, T. H. Hsieh, and C. Monroe (2020), “Generation of thermofield double states and critical ground states with a quantum computer,” Proceedings of the National Academy of Sciences 117 (41), 25402–25406.