Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous-time identification of dynamic state-space models by deep subspace encoding (2204.09405v2)

Published 20 Apr 2022 in cs.LG, cs.SY, and eess.SY

Abstract: Continuous-time (CT) modeling has proven to provide improved sample efficiency and interpretability in learning the dynamical behavior of physical systems compared to discrete-time (DT) models. However, even with numerous recent developments, the CT nonlinear state-space (NL-SS) model identification problem remains to be solved in full, considering common experimental aspects such as the presence of external inputs, measurement noise, latent states, and general robustness. This paper presents a novel estimation method that addresses all these aspects and that can obtain state-of-the-art results on multiple benchmarks with compact fully connected neural networks capturing the CT dynamics. The proposed estimation method called the subspace encoder approach (SUBNET) ascertains these results by efficiently approximating the complete simulation loss by evaluating short simulations on subsections of the data, by using an encoder function to estimate the initial state for each subsection and a novel state-derivative normalization to ensure stability and good numerical conditioning of the training process. We prove that the use of subsections increases cost function smoothness together with the necessary requirements for the existence of the encoder function and we show that the proposed state-derivative normalization is essential for reliable estimation of CT NL-SS models.

Citations (7)

Summary

We haven't generated a summary for this paper yet.