Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Torsion phenomena for zero-cycles on a product of curves over a number field (2204.05876v2)

Published 12 Apr 2022 in math.AG

Abstract: For a smooth projective variety $X$ over a number field $k$ a conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map of $X$ is a torsion group. In this article we consider a product $X=C_1\times\cdots\times C_d$ of smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true for $X$. Additionally, we produce many new examples of non-isogenous elliptic curves $E_1, E_2$ with positive rank over $\mathbb{Q}$ for which the image of the natural map $E_1(\mathbb{Q})\otimes E_2(\mathbb{Q})\xrightarrow{\varepsilon} \text{CH}_0(E_1\times E_2)$ is finite, including the first known examples of rank greater than $1$. Combining the two results, we obtain infinitely many nontrivial products $X=C_1\times\cdots\times C_d$ for which the analogous map $\varepsilon$ has finite image.

Summary

We haven't generated a summary for this paper yet.