Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Divisibility Results for zero-cycles (2004.05255v2)

Published 10 Apr 2020 in math.AG

Abstract: Let $X$ be a product of smooth projective curves over a finite unramified extension $k$ of $\mathbb{Q}_p$. Suppose that the Albanese variety of $X$ has good reduction and that $X$ has a $k$-rational point. We propose the following conjecture. The kernel of the Albanese map $CH_0(X)0\rightarrow\text{Alb}_X(k)$ is $p$-divisible. When $p$ is an odd prime, we prove this conjecture for a large family of products of elliptic curves and certain principal homogeneous spaces of abelian varieties. Using this, we provide some evidence for a local-to-global conjecture for zero-cycles of Colliot-Th\'{e}l`{e}ne and Sansuc (\cite{Colliot-Thelene/Sansuc1981}), and Kato and Saito (\cite{Kato/Saito1986}).

Summary

We haven't generated a summary for this paper yet.