Solitary routes to chimera states (2204.00385v3)
Abstract: We show how solitary states in a system of globally coupled FitzHugh-Nagumo oscillators can lead to the emergence of chimera states. By a numerical bifurcation analysis of a suitable reduced system in the thermodynamic limit we demonstrate how solitary states, after emerging from the synchronous state, become chaotic in a period-doubling cascade. Subsequently, states with a single chaotic oscillator give rise to states with an increasing number of incoherent chaotic oscillators. In large systems, these chimera states show extensive chaos. We demonstrate the coexistence of many of such chaotic attractors with different Lyapunov dimensions, due to different numbers of incoherent oscillators.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.