Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Cooperative Optimal Control Framework for Connected and Automated Vehicles in Mixed Traffic Using Social Value Orientation (2203.17106v2)

Published 31 Mar 2022 in eess.SY and cs.SY

Abstract: In this paper, we develop a socially cooperative optimal control framework to address the motion planning problem for connected and automated vehicles (CAVs) in mixed traffic using social value orientation (SVO) and a potential game approach. In the proposed framework, we formulate the interaction between a CAV and a human-driven vehicle (HDV) as a simultaneous game where each vehicle minimizes a weighted sum of its egoistic objective and a cooperative objective. The SVO angles are used to quantify preferences of the vehicles toward the egoistic and cooperative objectives. Using the potential game approach, we propose a single objective function for the optimal control problem whose weighting factors are chosen based on the SVOs of the vehicles. We prove that a Nash equilibrium can be obtained by minimizing the proposed objective function. To estimate the SVO angle of the HDV, we develop a moving horizon estimation algorithm based on maximum entropy inverse reinforcement learning. The effectiveness of the proposed approach is demonstrated by numerical simulations of a vehicle merging scenario.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com