Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-distillation Augmented Masked Autoencoders for Histopathological Image Classification (2203.16983v4)

Published 31 Mar 2022 in cs.CV

Abstract: Self-supervised learning (SSL) has drawn increasing attention in histopathological image analysis in recent years. Compared to contrastive learning which is troubled with the false negative problem, i.e., semantically similar images are selected as negative samples, masked autoencoders (MAE) building SSL from a generative paradigm is probably a more appropriate pre-training. In this paper, we introduce MAE and verify the effect of visible patches for histopathological image understanding. Moreover, a novel SD-MAE model is proposed to enable a self-distillation augmented MAE. Besides the reconstruction loss on masked image patches, SD-MAE further imposes the self-distillation loss on visible patches to enhance the representational capacity of the encoder located shallow layer. We apply SD-MAE to histopathological image classification, cell segmentation and object detection. Experiments demonstrate that SD-MAE shows highly competitive performance when compared with other SSL methods in these tasks.

Summary

We haven't generated a summary for this paper yet.