Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-supervised TransUNet for Ultrasound regional segmentation of the distal radius in children (2309.09490v1)

Published 18 Sep 2023 in eess.IV and cs.CV

Abstract: Supervised deep learning offers great promise to automate analysis of medical images from segmentation to diagnosis. However, their performance highly relies on the quality and quantity of the data annotation. Meanwhile, curating large annotated datasets for medical images requires a high level of expertise, which is time-consuming and expensive. Recently, to quench the thirst for large data sets with high-quality annotation, self-supervised learning (SSL) methods using unlabeled domain-specific data, have attracted attention. Therefore, designing an SSL method that relies on minimal quantities of labeled data has far-reaching significance in medical images. This paper investigates the feasibility of deploying the Masked Autoencoder for SSL (SSL-MAE) of TransUNet, for segmenting bony regions from children's wrist ultrasound scans. We found that changing the embedding and loss function in SSL-MAE can produce better downstream results compared to the original SSL-MAE. In addition, we determined that only pretraining TransUNet embedding and encoder with SSL-MAE does not work as well as TransUNet without SSL-MAE pretraining on downstream segmentation tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yuyue Zhou (6 papers)
  2. Jessica Knight (3 papers)
  3. Banafshe Felfeliyan (7 papers)
  4. Christopher Keen (2 papers)
  5. Abhilash Rakkunedeth Hareendranathan (4 papers)
  6. Jacob L. Jaremko (14 papers)

Summary

We haven't generated a summary for this paper yet.