Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistic Selection and MCMC for Differentially Private Bayesian Estimation (2203.13377v2)

Published 24 Mar 2022 in stat.ME, cs.LG, stat.CO, and stat.ML

Abstract: This paper concerns differentially private Bayesian estimation of the parameters of a population distribution, when a statistic of a sample from that population is shared in noise to provide differential privacy. This work mainly addresses two problems: (1) What statistic of the sample should be shared privately? For the first question, i.e., the one about statistic selection, we promote using the Fisher information. We find out that, the statistic that is most informative in a non-privacy setting may not be the optimal choice under the privacy restrictions. We provide several examples to support that point. We consider several types of data sharing settings and propose several Monte Carlo-based numerical estimation methods for calculating the Fisher information for those settings. The second question concerns inference: (2) Based on the shared statistics, how could we perform effective Bayesian inference? We propose several Markov chain Monte Carlo (MCMC) algorithms for sampling from the posterior distribution of the parameter given the noisy statistic. The proposed MCMC algorithms can be preferred over one another depending on the problem. For example, when the shared statistics is additive and added Gaussian noise, a simple Metropolis-Hasting algorithm that utilizes the central limit theorem is a decent choice. We propose more advanced MCMC algorithms for several other cases of practical relevance. Our numerical examples involve comparing several candidate statistics to be shared privately. For each statistic, we perform Bayesian estimation based on the posterior distribution conditional on the privatized version of that statistic. We demonstrate that, the relative performance of a statistic, in terms of the mean squared error of the Bayesian estimator based on the corresponding privatized statistic, is adequately predicted by the Fisher information of the privatized statistic.

Citations (3)

Summary

We haven't generated a summary for this paper yet.