Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Connecting Stochastic Gradient MCMC and Differential Privacy (1712.09097v1)

Published 25 Dec 2017 in stat.ML and cs.LG

Abstract: Significant success has been realized recently on applying machine learning to real-world applications. There have also been corresponding concerns on the privacy of training data, which relates to data security and confidentiality issues. Differential privacy provides a principled and rigorous privacy guarantee on machine learning models. While it is common to design a model satisfying a required differential-privacy property by injecting noise, it is generally hard to balance the trade-off between privacy and utility. We show that stochastic gradient Markov chain Monte Carlo (SG-MCMC) -- a class of scalable Bayesian posterior sampling algorithms proposed recently -- satisfies strong differential privacy with carefully chosen step sizes. We develop theory on the performance of the proposed differentially-private SG-MCMC method. We conduct experiments to support our analysis and show that a standard SG-MCMC sampler without any modification (under a default setting) can reach state-of-the-art performance in terms of both privacy and utility on Bayesian learning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Bai Li (33 papers)
  2. Changyou Chen (108 papers)
  3. Hao Liu (497 papers)
  4. Lawrence Carin (203 papers)
Citations (37)

Summary

We haven't generated a summary for this paper yet.