Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DepthGAN: GAN-based Depth Generation of Indoor Scenes from Semantic Layouts (2203.11453v1)

Published 22 Mar 2022 in cs.CV

Abstract: Limited by the computational efficiency and accuracy, generating complex 3D scenes remains a challenging problem for existing generation networks. In this work, we propose DepthGAN, a novel method of generating depth maps with only semantic layouts as input. First, we introduce a well-designed cascade of transformer blocks as our generator to capture the structural correlations in depth maps, which makes a balance between global feature aggregation and local attention. Meanwhile, we propose a cross-attention fusion module to guide edge preservation efficiently in depth generation, which exploits additional appearance supervision information. Finally, we conduct extensive experiments on the perspective views of the Structured3d panorama dataset and demonstrate that our DepthGAN achieves superior performance both on quantitative results and visual effects in the depth generation task.Furthermore, 3D indoor scenes can be reconstructed by our generated depth maps with reasonable structure and spatial coherency.

Citations (3)

Summary

We haven't generated a summary for this paper yet.