Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Faster Asynchronous Nonconvex Block Coordinate Descent with Locally Chosen Stepsizes (2203.11307v1)

Published 21 Mar 2022 in math.OC

Abstract: Distributed nonconvex optimization problems underlie many applications in learning and autonomy, and such problems commonly face asynchrony in agents' computations and communications. When delays in these operations are bounded, they are called partially asynchronous. In this paper, we present an uncoordinated stepsize selection rule for partially asynchronous block coordinate descent that only requires local information to implement, and it leads to faster convergence for a class of nonconvex problems than existing stepsize rules, which require global information in some form. The problems we consider satisfy the error bound condition, and the stepsize rule we present only requires each agent to know (i) a certain type of Lipschitz constant of its block of the gradient of the objective and (ii) the communication delays experienced between it and its neighbors. This formulation requires less information to be available to each agent than existing approaches, typically allows for agents to use much larger stepsizes, and alleviates the impact of stragglers while still guaranteeing convergence to a stationary point. Simulation results provide comparisons and validate the faster convergence attained by the stepsize rule we develop.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube