Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

3D Multi-Object Tracking Using Graph Neural Networks with Cross-Edge Modality Attention (2203.10926v2)

Published 21 Mar 2022 in cs.CV, cs.LG, and cs.RO

Abstract: Online 3D multi-object tracking (MOT) has witnessed significant research interest in recent years, largely driven by demand from the autonomous systems community. However, 3D offline MOT is relatively less explored. Labeling 3D trajectory scene data at a large scale while not relying on high-cost human experts is still an open research question. In this work, we propose Batch3DMOT which follows the tracking-by-detection paradigm and represents real-world scenes as directed, acyclic, and category-disjoint tracking graphs that are attributed using various modalities such as camera, LiDAR, and radar. We present a multi-modal graph neural network that uses a cross-edge attention mechanism mitigating modality intermittence, which translates into sparsity in the graph domain. Additionally, we present attention-weighted convolutions over frame-wise k-NN neighborhoods as suitable means to allow information exchange across disconnected graph components. We evaluate our approach using various sensor modalities and model configurations on the challenging nuScenes and KITTI datasets. Extensive experiments demonstrate that our proposed approach yields an overall improvement of 3.3% in the AMOTA score on nuScenes thereby setting the new state-of-the-art for 3D tracking and further enhancing false positive filtering.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube