Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Computing the least action ground state of the nonlinear Schrödinger equation by a normalized gradient flow (2203.10788v2)

Published 21 Mar 2022 in math.NA and cs.NA

Abstract: In this paper, we generalize the normalized gradient flow method which was first applied to computing the least energy ground state to compute the least action ground state. A continuous normalized gradient flow (CNGF) will be presented and the action diminishing property will be proved to provide a mathematical justification of the gradient flow with discrete normalization (GFDN). Then we use backward-forward Euler method to further discretize the GFDN in time which leads to the GFDN-BF scheme. It is shown that the GFDN-BF scheme preserves the positivity and diminishes the action unconditionally. We compare it with other three schemes which are modified from corresponding ones designed for the least energy ground state and the numerical results show that the GFDN-BF scheme performs much better than the others in accuracy, efficiency and robustness for large time steps. Extensive numerical results of least action ground states for several types of potentials are provided. We also use our numerical results to verify some existing results and lead to some conjectures.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)