Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wavenumber-explicit parametric holomorphy of Helmholtz solutions in the context of uncertainty quantification (2203.10270v2)

Published 19 Mar 2022 in math.AP, cs.NA, and math.NA

Abstract: A crucial role in the theory of uncertainty quantification (UQ) of PDEs is played by the regularity of the solution with respect to the stochastic parameters; indeed, a key property one seeks to establish is that the solution is holomorphic with respect to (the complex extensions of) the parameters. In the context of UQ for the high-frequency Helmholtz equation, a natural question is therefore: how does this parametric holomorphy depend on the wavenumber $k$? The paper [Ganesh, Kuo, Sloan 2021] showed for a particular nontrapping variable-coefficient Helmholtz problem with affine dependence of the coefficients on the stochastic parameters that the solution operator can be analytically continued a distance $\sim k{-1}$ into the complex plane. In this paper, we generalise the result in [Ganesh, Kuo, Sloan 2021] about $k$-explicit parametric holomorphy to a much wider class of Helmholtz problems with arbitrary (holomorphic) dependence on the stochastic parameters; we show that in all cases the region of parametric holomorphy decreases with $k$, and show how the rate of decrease with $k$ is dictated by whether the unperturbed Helmholtz problem is trapping or nontrapping. We then give examples of both trapping and nontrapping problems where these bounds on the rate of decrease with $k$ of the region of parametric holomorphy are sharp, with the trapping examples coming from the recent results of [Galkowski, Marchand, Spence 2021]. An immediate implication of these results is that the $k$-dependent restrictions imposed on the randomness in the analysis of quasi-Monte Carlo (QMC) methods in [Ganesh, Kuo, Sloan 2021] arise from a genuine feature of the Helmholtz equation with $k$ large (and not, for example, a suboptimal bound).

Citations (8)

Summary

We haven't generated a summary for this paper yet.