Wavenumber-explicit convergence of the $hp$-FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients (2010.00585v4)
Abstract: A convergence theory for the $hp$-FEM applied to a variety of constant-coefficient Helmholtz problems was pioneered in the papers [Melenk-Sauter, 2010], [Melenk-Sauter, 2011], [Esterhazy-Melenk, 2012], [Melenk-Parsania-Sauter, 2013]. This theory shows that, if the solution operator is bounded polynomially in the wavenumber $k$, then the Galerkin method is quasioptimal provided that $hk/p \leq C_1$ and $p\geq C_2 \log k$, where $C_1$ is sufficiently small, $C_2$ is sufficiently large, and both are independent of $k,h,$ and $p$. The significance of this result is that if $hk/p= C_1$ and $p=C_2\log k$, then quasioptimality is achieved with the total number of degrees of freedom proportional to $kd$; i.e., the $hp$-FEM does not suffer from the pollution effect. This paper proves the analogous quasioptimality result for the heterogeneous (i.e. variable-coefficient) Helmholtz equation, posed in $\mathbb{R}d$, $d=2,3$, with the Sommerfeld radiation condition at infinity, and $C\infty$ coefficients. We also prove a bound on the relative error of the Galerkin solution in the particular case of the plane-wave scattering problem. These are the first ever results on the wavenumber-explicit convergence of the $hp$-FEM for the Helmholtz equation with variable coefficients.