Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Feynman rules for forced wave turbulence (2203.08168v4)

Published 15 Mar 2022 in cond-mat.stat-mech, hep-th, nlin.CD, and physics.flu-dyn

Abstract: It has long been known that weakly nonlinear field theories can have a late-time stationary state that is not the thermal state, but a wave turbulent state with a far-from-equilibrium cascade of energy. We go beyond the existence of the wave turbulent state, studying fluctuations about the wave turbulent state. Specifically, we take a classical field theory with an arbitrary quartic interaction and add dissipation and Gaussian-random forcing. Employing the path integral relation between stochastic classical field theories and quantum field theories, we give a prescription, in terms of Feynman diagrams, for computing correlation functions in this system. We explicitly compute the two-point and four-point functions of the field to next-to-leading order in the coupling. Through an appropriate choice of forcing and dissipation, these correspond to correlation functions in the wave turbulent state. In particular, we derive the kinetic equation to next-to-leading order.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (97)
  1. S. Schlichting and D. Teaney, “The First fm/c of Heavy-Ion Collisions,” Ann. Rev. Nucl. Part. Sci. 69 (2019) 447–476, arXiv:1908.02113 [nucl-th].
  2. T. Langen, R. Geiger, and J. Schmiedmayer, “Ultracold atoms out of equilibrium,” Ann. Rev. Condensed Matter Phys. 6 (2015) 201, arXiv:1408.6377 [cond-mat.quant-gas].
  3. P. N. Jepsen, J. Amato-Grill, I. Dimitrova, W. W. Ho, E. Demler, and W. Ketterle, “Spin transport in a tunable heisenberg model realized with ultracold atoms,”Nature 588 (Dec, 2020) 403–407, arXiv:2005.09549 [cond-mat.quant-gas].
  4. A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, “Nonequilibrium dynamics of closed interacting quantum systems,” Rev. Mod. Phys. 83 (2011) 863, arXiv:1007.5331 [cond-mat.stat-mech].
  5. V. Zakharov, “Weak turbulence in media with a decay spectrum,” J Appl Mech Tech Phys 6 (1965) 22–24.
  6. Springer-Verlag  1992.
  7. S. Nazarenko, Wave Turbulence. Springer-Verlag Berlin Heidelberg, 2011.
  8. G. Düring, C. Josserand, and S. Rica, “Wave turbulence theory of elastic plates,” Physica D: Nonlinear Phenomena 347 (2017) no. 15, 42–73.
  9. G. Düring, C. Josserand, and S. Rica, “Weak Turbulence for a Vibrating Plate: Can One Hear a Kolmogorov Spectrum?,”Phys. Rev. Lett. 97 (Jul, 2006) 025503.
  10. N. Mordant and B. Miquel, “Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate,”Phys. Rev. E 96 (Oct, 2017) 042204, arXiv:1710.00662 [cond-mat.soft].
  11. B. Miquel, A. Alexakis, C. Josserand, and N. Mordant, “Transition from Wave Turbulence to Dynamical Crumpling in Vibrated Elastic Plates,”Phys. Rev. Lett. 111 (Aug, 2013) 054302, arXiv:1306.0313 [nlin.CD].
  12. S. Chibbaro and C. Josserand, “Elastic wave turbulence and intermittency,”Physical Review E 94 (Jul, 2016) , arXiv:1511.03176 [cond-mat.stat-mech].
  13. G. Düring, C. Josserand, G. Krstulovic, and S. Rica, “Strong turbulence for vibrating plates: Emergence of a Kolmogorov spectrum,”Phys. Rev. Fluids 4 (Jun, 2019) 064804, arXiv:1808.02025 [nlin.CD].
  14. B. Miquel, A. Naert, and S. Aumaître, “Low-frequency spectra of bending wave turbulence,”Physical Review E 103 (Jun, 2021) , arXiv:2101.03908 [cond-mat.soft].
  15. M. Onorato, A. R. Osborne, M. Serio, D. Resio, A. Pushkarev, V. E. Zakharov, and C. Brandini, “Freely Decaying Weak Turbulence for Sea Surface Gravity Waves,”Physical Review Letters 89 (Sep, 2002) .
  16. A. I. Dyachenko, A. O. Korotkevich, and V. E. Zakharov, “Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves,”Physical Review Letters 92 (Apr, 2004) .
  17. E. Fadaeiazar, J. Leontini, M. Onorato, T. Waseda, A. Alberello, and A. Toffoli, “Fourier amplitude distribution and intermittency in mechanically generated surface gravity waves,”Physical Review E 102 (Jul, 2020) , arXiv:2003.08666 [physics.flu-dyn].
  18. Z. Zhang and Y. Pan, “Numerical investigation of turbulence of surface gravity waves,”Journal of Fluid Mechanics 933 (Jan, 2022) , arXiv:2108.01189 [physics.flu-dyn]. http://dx.doi.org/10.1017/jfm.2021.1114.
  19. F. Cabrera and P. J. Cobelli, “Design, construction and validation of an instrumented particle for the Lagrangian characterization of flows,”Experiments in Fluids 62 (Jan, 2021) , arXiv:2101.01482 [phys.flu-dyn].
  20. A. I. Dyachenko, A. O. Korotkevich, and V. E. Zakharov, “Weak turbulence of gravity waves,”Journal of Experimental and Theoretical Physics Letters 77 (May, 2003) 546–550, arXiv:10308101 [physics.flu-dyn].
  21. S. Galtier and S. V. Nazarenko, “Direct Evidence of a Dual Cascade in Gravitational Wave Turbulence,”Physical Review Letters 127 (Sep, 2021) , arXiv:2108.09158 [gr-qc].
  22. A. Brandenburg, G. Gogoberidze, T. Kahniashvili, S. Mandal, A. R. Pol, and N. Shenoy, “The scalar, vector, and tensor modes in gravitational wave turbulence simulations,”Classical and Quantum Gravity 38 (Jun, 2021) 145002, arXiv:2103.01140 [gr-qc].
  23. S. Y. Annenkov and V. I. Shrira, “Direct Numerical Simulation of Downshift and Inverse Cascade for Water Wave Turbulence,”Phys. Rev. Lett. 96 (May, 2006) 204501.
  24. A. Griffin, G. Krstulovic, V. L’vov, and S. Nazarenko, “Energy spectrum of two-dimensional acoustic turbulence,” arXiv:2112.10662 [cond-mat.other].
  25. J. Skipp and S. Nazarenko, “Equilibria and condensates in Rossby and drift wave turbulence,”Journal of Physics A: Mathematical and Theoretical 55 (Dec, 2021) 015701, arXiv:2108.08349 [physics.flu-dyn].
  26. P. Emanuel and A. Feigel, “Turbulence and capillary waves on bubbles,”Physical Review E 104 (Aug, 2021) , arXiv:2106.03125 [physics.flu-dyn].
  27. M. A. G. dos Santos Filho and F. E. A. dos Santos, “Emergent Hydrodynamic Turbulence from Wave Turbulence,” arXiv:2104.02798 [cond-mat.quant-gas].
  28. A. Pezzi, G. Deng, Y. Lvov, M. Lorenzo, and M. Onorato, “Three-wave resonant interactions in the diatomic chain with cubic anharmonic potential: theory and simulations,” arXiv:2103.08336 [cond-mat.stat-mech].
  29. H. Zhu and I. Y. Dodin, “Wave-kinetic approach to zonal-flow dynamics: Recent advances,”Physics of Plasmas 28 (Mar, 2021) 032303, arXiv:2101.04160 [physics.plasm-ph].
  30. C.-C. Chen, P. H. Diamond, R. Singh, and S. M. Tobias, “Potential vorticity transport in weakly and strongly magnetized plasmas,”Physics of Plasmas 28 (Apr, 2021) 042301, arXiv:2012.10611 [phys.plasm-ph].
  31. A. Fusaro, J. Garnier, K. Krupa, G. Millot, and A. Picozzi, “Dramatic Acceleration of Wave Condensation Mediated by Disorder in Multimode Fibers,”Physical Review Letters 122 (Mar, 2019) , arXiv:2011.05111 [physics.optics].
  32. K. Baudin, A. Fusaro, J. Garnier, N. Berti, K. Krupa, I. Carusotto, S. Rica, G. Millot, and A. Picozzi, “Energy and wave-action flows underlying Rayleigh-Jeans thermalization of optical waves propagating in a multimode fiber,”Europhysics Letters 134 (Apr, 2021) 14001, arXiv:2012.02235 [physics.optics].
  33. K. Baudin, J. Garnier, A. Fusaro, N. Berti, G. Millot, and A. Picozzi, “Weak Langmuir turbulence in disordered multimode optical fibers,”Physical Review A 105 (Jan, 2022) , arXiv:2111.05744 [physics.optics].
  34. T. L. Reun, B. Favier, and M. L. Bars, “Evidence of the Zakharov-Kolmogorov spectrum in numerical simulations of inertial wave turbulence,” arXiv:2011.05271 [physics.flu-dyn].
  35. E. Monsalve, M. Brunet, B. Gallet, and P.-P. Cortet, “Quantitative Experimental Observation of Weak Inertial-Wave Turbulence,”Physical Review Letters 125 (Dec, 2020) , arXiv:2010.15563.
  36. L. Pistone, S. Chibbaro, M. D. Bustamante, Y. V. Lvov, and M. Onorato, “Universal route to thermalization in weakly-nonlinear one-dimensional chains,” Mathematics in Engineering 1 (2019) no. 3, 672–698, arXiv:1812.08279 [nlin.CD].
  37. C. F. Barenghi, L. Skrbek, and K. R. Sreenivasan, “Introduction to quantum turbulence,” Proceedings of the National Academy of Sciences no. Supplement 1, 4647–4652.
  38. T. Buckmaster, P. Germain, Z. Hani, and J. Shatah, “Onset of the wave turbulence description of the longtime behavior of the nonlinear Schrödinger equation,” arXiv:1907.03667 [math.AP].
  39. J. W. Banks, T. Buckmaster, A. O. Korotkevich, G. Kovacic, and J. Shatah, “Direct verification of the kinetic description of wave turbulence,” arXiv:2109.02477 [physics.flu-dyn].
  40. Y. Zhu, B. Semisalov, G. Krstulovic, and S. Nazarenko, “Testing wave turbulence theory for Gross-Pitaevskii system,” arXiv:2111.14560 [physics.flu-dyn].
  41. V. Shukla and S. Nazarenko, “Non-equilibrium bose-einstein condensation,” arXiv:2105.07274 [cond-mat.quant-gas].
  42. B. Semisalov, V. Grebenev, S. Medvedev, and S. Nazarenko, “Numerical analysis of a self-similar turbulent flow in Bose–Einstein condensates,”Communications in Nonlinear Science and Numerical Simulation 102 (Nov, 2021) 105903, arXiv:2104.14591 [physics.flu-dyn].
  43. G. Düring, A. Picozzi, and S. Rica, “Breakdown of weak-turbulence and nonlinear wave condensation,” Physica D: Nonlinear Phenomena 238 (2009) no. 16, 1524–1549.
  44. N. P. Muller and G. Krstulovic, “Kolmogorov and Kelvin wave cascades in a generalized model for quantum turbulence,”Physical Review B 102 (Oct, 2020) , arXiv:2007.00540 [cond-mat.other].
  45. R. Micha and I. I. Tkachev, “Turbulent thermalization,” Phys. Rev. D 70 (2004) 043538, arXiv:hep-ph/0403101.
  46. J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, “Basin of attraction for turbulent thermalization and the range of validity of classical-statistical simulations,” JHEP 05 (2014) 054, arXiv:1312.5216 [hep-ph].
  47. A. Piñeiro Orioli, K. Boguslavski, and J. Berges, “Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points,” Phys. Rev. D 92 (2015) no. 2, 025041, arXiv:1503.02498 [hep-ph].
  48. X. Du and S. Schlichting, “Equilibration of weakly coupled QCD plasmas,” Phys. Rev. D 104 (2021) no. 5, 054011, arXiv:2012.09079 [hep-ph].
  49. A. Chatrchyan, K. T. Geier, M. K. Oberthaler, J. Berges, and P. Hauke, “Analog cosmological reheating in an ultracold Bose gas,” Phys. Rev. A 104 (2021) no. 2, 023302, arXiv:2008.02290 [cond-mat.quant-gas].
  50. J. Berges, “Nonequilibrium Quantum Fields: From Cold Atoms to Cosmology,” arXiv:1503.02907 [hep-ph].
  51. J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan, “Turbulent thermalization process in heavy-ion collisions at ultrarelativistic energies,” Phys. Rev. D 89 (2014) no. 7, 074011, arXiv:1303.5650 [hep-ph].
  52. J. Berges, S. Borsanyi, and C. Wetterich, “Prethermalization,” Phys. Rev. Lett. 93 (2004) 142002, arXiv:hep-ph/0403234.
  53. C.-M. Schmied, A. N. Mikheev, and T. Gasenzer, “Non-thermal fixed points: Universal dynamics far from equilibrium,” Int. J. Mod. Phys. A 34 (2019) no. 29, 1941006, arXiv:1810.08143 [cond-mat.quant-gas].
  54. S. Erne, R. Bücker, T. Gasenzer, J. Berges, and J. Schmiedmayer, “Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium,” Nature 563 (2018) no. 7730, 225–229, arXiv:1805.12310 [cond-mat.quant-gas].
  55. M. Prüfer, P. Kunkel, H. Strobel, S. Lannig, D. Linnemann, C.-M. Schmied, J. Berges, T. Gasenzer, and M. K. Oberthaler, “Observation of universal dynamics in a spinor bose gas far from equilibrium,” Nature 563 (2018) no. 7730, 217–220.
  56. J. A. P. Glidden, C. Eigen, L. H. Dogra, T. A. Hilker, R. P. Smith, and Z. Hadzibabic, “Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium,” Nature Phys. 17 (2021) no. 4, 457–461, arXiv:2006.01118 [cond-mat.quant-gas].
  57. Y. Choi, Y. V. Lvov, and S. Nazarenko, “Joint statistics of amplitudes and phases in wave turbulence,”Physica D: Nonlinear Phenomena 201 (Feb, 2005) 121–149, arXiv:math-ph/0412046v2.
  58. G. L. Eyink and Y.-K. Shi, “Kinetic wave turbulence,”Physica D: Nonlinear Phenomena 241 (Sep, 2012) 1487–1511.
  59. Alan C. Newell and Sergey Nazarenko and Laura Biven, “Wave turbulence, Intermittency, Asymptotic closure, Cumulants,” Physica D: Nonlinear Phenomena 152-153 (2001) 520–550.
  60. Newell, Alan C. and Rumpf, Benno, “Wave Turbulence,” Annual Review of Fluid Mechanics 42 (2011) 59–78.
  61. E. Faou, “Linearized wave turbulence convergence results for three-wave systems,” arXiv:1805.11269 [math.AP].
  62. C. Collot and P. Germain, “Derivation of the homogeneous kinetic wave equation: longer time scales,” arXiv:2007.03508 [math.AP].
  63. A. Dymov and S. Kuksin, “On the zakharov–l’vov stochastic model for wave turbulence,” in Doklady Mathematics, vol. 101, pp. 102–109, Springer. 2020. arXiv:1907.05044 [math-ph].
  64. Y.-K. Shi and G. L. Eyink, “Resonance Van Hove singularities in wave kinetics,”Physica D: Nonlinear Phenomena 332 (Oct, 2016) 55–72, arXiv:1507.08320 [physics.flu-dyn].
  65. A. Soffer and M.-B. Tran, “On the Energy Cascade of 3-Wave Kinetic Equations: Beyond Kolmogorov–Zakharov Solutions,”Communications in Mathematical Physics 376 (Dec, 2019) 2229–2276, arXiv:1811.06951 [math-ph].
  66. S. Walton and M.-B. Tran, “A Numerical Scheme for Wave Turbulence: 3-Wave Kinetic Equations,” arXiv:2110.10124 [math.NA].
  67. A. Aceves, R. Alonso, and M.-B. Tran, “Wave turbulence and collective behavior models for wave equations with short- and long-range interactions,” arXiv:2110.07830 [math.AP].
  68. Y. Deng and Z. Hani, “Full derivation of the wave kinetic equation,” arXiv:2104.11204 [math.AP].
  69. I. Ampatzoglou, C. Collot, and P. Germain, “Derivation of the kinetic wave equation for quadratic dispersive problems in the inhomogeneous setting,” arXiv:2107.11819 [math.AP].
  70. A. J. Majda, D. W. McLaughlin, and E. G. Tabak, “A one-dimensional model for dispersive wave turbulence,” Journal of Nonlinear Science 7 (1997) no. 1, 9–44.
  71. V. Zakharov, F. Dias, and A. Pushkarev, “One-dimensional wave turbulence,” Physics Reports 398 (2004) no. 1, 1–65.
  72. S. Chibbaro, F. De Lillo, and M. Onorato, “Weak versus strong wave turbulence in the Majda-McLaughlin-Tabak model,”Phys. Rev. Fluids 2 (May, 2017) 052603, arXiv:1609.01636 [physics.flu-dyn].
  73. A. Hrabski and Y. Pan, “On the Properties of Energy Flux in Wave Turbulence,” arXiv:2110.07666 [physics.flu-dyn].
  74. N. Vladimirova, M. Shavit, and G. Falkovich, “Fibonacci Turbulence,”Physical Review X 11 (Jun, 2021) , arXiv:2101.10418 [nlin.CD].
  75. M. Shavit and G. Falkovich, “Singular Measures and Information Capacity of Turbulent Cascades,” Phys. Rev. Lett. 125 (2020) 104501, arXiv:1911.12670.
  76. V. I. Erofeev and V. M. Malkin, “Kinetics of weakly turbulent wave fields,” Zh.Eksp.Teor.Fiz (Journal of Experimental and Theoretical Physics) 96 (1989) 1666–16697. http://jetp.ras.ru/cgi-bin/dn/e_069_05_0943.pdf.
  77. A. Polyakov unpublished
  78. V. Gurarie, Statistics without thermodynamic equilibrium. PhD thesis, Princeton University, 1996. https://scholar.google.com/citations?view_op=view_citation&hl=en&user=lX4Ods8AAAAJ&cstart=100&pagesize=100&sortby=pubdate&citation_for_view=lX4Ods8AAAAJ:f2IySw72cVMC.
  79. V. Gurarie, “Probability density, diagrammatic technique, and epsilon expansion in the theory of wave turbulence,” Nucl. Phys. B 441 (1995) 569–594, arXiv:hep-th/9405077.
  80. V. Gurarie and A. Migdal, “Instantons in the burgers equation,”Physical Review E 54 (Nov, 1996) 4908–4914, arXiv:hep-th/9512128.
  81. H. Wyld, “Formulation of the theory of turbulence in an incompressible fluid,” Annals of Physics 14 (1961) 143–165.
  82. Z.-J. Jean, Field Theory and Critical Phenomenon. Oxford University Press;, 2021.
  83. G. Falkovich, I. Kolokolov, V. Lebedev, and A. Migdal, “Instantons and intermittency,”Phys. Rev. E 54 (Nov, 1996) 4896–4907.
  84. P. C. Martin, E. Siggia, and H. A. Rose, “Statistical Dynamics of Classical Systems,” Phys. Rev. A 8 (1973) no. 1, 423–437.
  85. Y. V. Lvov and S. Nazarenko, “Noisy spectra, long correlations, and intermittency in wave turbulence,” Phys. Rev. E 69 (2004) 066608, arXiv:math-ph/0305028.
  86. S. Chibbaro, G. Dematteis, and L. Rondoni, “4-wave dynamics in kinetic wave turbulence,” Physica D: Nonlinear Phenomena 362 (2018) 24–59, arXiv:1611.08030 [physics.flu-dyn].
  87. M. Rosenzweig and G. Staffilani, “Uniqueness of Solutions to the Spectral Hierarchy in Kinetic Wave Turbulence Theory,” arXiv:2104.06907 [math-ph].
  88. P. Jakobsen and A. C. Newell, “Invariant measures and entropy production in wave turbulence,”Journal of Statistical Mechanics: Theory and Experiment 2004 (oct, 2004) L10002. https://math.uit.no/seminar/Preprints/04-09-PJAN.pdf.
  89. G. Falkovich. https://www.weizmann.ac.il/complex/falkovich/sites/complex.falkovich/files/uploads/turbulence.pdf.
  90. V. E. Zakharov and V. S. Lvov, “The statistical description of nonlinear wave fields,” Radiophysics and Quantum Electronics 18 (1975) no. 10, 1470–1487. https://link.springer.com/content/pdf/10.1007/BF01040337.pdf.
  91. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory. Perseus Books, 1995.
  92. E. Falcon and N. Mordant, “Experiments in Surface Gravity – Capillary Wave Turbulence,”Annual Review of Fluid Mechanics 54 (Jan, 2022) 1–25, arXiv:2107.04015 [physics.flu-dyn].
  93. G. Ricard and E. Falcon, “Experimental quasi-1D capillary-wave turbulence,”EPL (Europhysics Letters) 135 (Sep, 2021) 64001, arXiv:2110.01448 [physics.flu-dyn].
  94. E. Kochurin, G. Ricard, N. Zubarev, and E. Falcon, “Numerical Simulation of Collinear Capillary-Wave Turbulence,”JETP Letters 112 (Dec, 2020) 757–763, arXiv:2011.05636 [physics.flu-dyn].
  95. M. A. Amin, M. P. Hertzberg, D. I. Kaiser, and J. Karouby, “Nonperturbative Dynamics Of Reheating After Inflation: A Review,” Int. J. Mod. Phys. D 24 (2014) 1530003, arXiv:1410.3808 [hep-ph].
  96. P. Calabrese and J. Cardy, “Quantum Quenches in Extended Systems,” J. Stat. Mech. 0706 (2007) P06008, arXiv:0704.1880 [cond-mat.stat-mech].
  97. P. Calabrese and J. Cardy, “Quantum quenches in 1 + 1 dimensional conformal field theories,” J. Stat. Mech. 1606 (2016) no. 6, 064003, arXiv:1603.02889 [cond-mat.stat-mech].
Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com