Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CMKD: CNN/Transformer-Based Cross-Model Knowledge Distillation for Audio Classification (2203.06760v1)

Published 13 Mar 2022 in cs.SD, cs.AI, and eess.AS

Abstract: Audio classification is an active research area with a wide range of applications. Over the past decade, convolutional neural networks (CNNs) have been the de-facto standard building block for end-to-end audio classification models. Recently, neural networks based solely on self-attention mechanisms such as the Audio Spectrogram Transformer (AST) have been shown to outperform CNNs. In this paper, we find an intriguing interaction between the two very different models - CNN and AST models are good teachers for each other. When we use either of them as the teacher and train the other model as the student via knowledge distillation (KD), the performance of the student model noticeably improves, and in many cases, is better than the teacher model. In our experiments with this CNN/Transformer Cross-Model Knowledge Distillation (CMKD) method we achieve new state-of-the-art performance on FSD50K, AudioSet, and ESC-50.

Citations (25)

Summary

We haven't generated a summary for this paper yet.