Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Convolutional Neural Networks as Efficient Pre-trained Audio Models (2310.15648v1)

Published 24 Oct 2023 in cs.SD, cs.LG, and eess.AS

Abstract: The introduction of large-scale audio datasets, such as AudioSet, paved the way for Transformers to conquer the audio domain and replace CNNs as the state-of-the-art neural network architecture for many tasks. Audio Spectrogram Transformers are excellent at exploiting large datasets, creating powerful pre-trained models that surpass CNNs when fine-tuned on downstream tasks. However, current popular Audio Spectrogram Transformers are demanding in terms of computational complexity compared to CNNs. Recently, we have shown that, by employing Transformer-to-CNN Knowledge Distillation, efficient CNNs can catch up with and even outperform Transformers on large datasets. In this work, we extend this line of research and increase the capacity of efficient CNNs by introducing dynamic CNN blocks, constructed of dynamic non-linearities, dynamic convolutions and attention mechanisms. We show that these dynamic CNNs outperform traditional efficient CNNs, in terms of the performance-complexity trade-off and parameter efficiency, at the task of audio tagging on the large-scale AudioSet. Our experiments further indicate that the introduced dynamic CNNs achieve better performance on downstream tasks and scale up well, attaining Transformer performance and even outperforming them on AudioSet and several downstream tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Florian Schmid (16 papers)
  2. Khaled Koutini (20 papers)
  3. Gerhard Widmer (144 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.