Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 Pro
2000 character limit reached

A trace inequality of Ando, Hiai and Okubo and a monotonicity property of the Golden-Thompson inequality (2203.06136v1)

Published 11 Mar 2022 in math-ph, math.MP, and quant-ph

Abstract: The Golden-Thompson trace inequality which states that $Tr\, e{H+K} \leq Tr\, eH eK$ has proved to be very useful in quantum statistical mechanics. Golden used it to show that the classical free energy is less than the quantum one. Here we make this G-T inequality more explicit by proving that for some operators, notably the operators of interest in quantum mechanics, $H=\Delta$ or $H= -\sqrt{-\Delta +m}$ and $K=$ potential, $Tr\, e{H+(1-u)K}e{uK}$ is a monotone increasing function of the parameter $u$ for $0\leq u \leq 1$. Our proof utilizes an inequality of Ando, Hiai and Okubo (AHO): $Tr\, XsYtX{1-s}Y{1-t} \leq Tr\, XY$ for positive operators X,Y and for $\tfrac{1}{2} \leq s,\,t \leq 1 $ and $s+t \leq \tfrac{3}{2}$. The obvious conjecture that this inequality should hold up to $s+t\leq 1$, was proved false by Plevnik. We give a different proof of AHO and also give more counterexamples in the $\tfrac{3}{2}, 1$ range. More importantly we show that the inequality conjectured in AHO does indeed hold in this range if $X,Y$ have a certain positivity property -- one which does hold for quantum mechanical operators, thus enabling us to prove our G-T monotonicity theorem.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.