Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Onception: Active Learning with Expert Advice for Real World Machine Translation (2203.04507v2)

Published 9 Mar 2022 in cs.CL

Abstract: Active learning can play an important role in low-resource settings (i.e., where annotated data is scarce), by selecting which instances may be more worthy to annotate. Most active learning approaches for Machine Translation assume the existence of a pool of sentences in a source language, and rely on human annotators to provide translations or post-edits, which can still be costly. In this article, we assume a real world human-in-the-loop scenario in which: (i) the source sentences may not be readily available, but instead arrive in a stream; (ii) the automatic translations receive feedback in the form of a rating, instead of a correct/edited translation, since the human-in-the-loop might be a user looking for a translation, but not be able to provide one. To tackle the challenge of deciding whether each incoming pair source-translations is worthy to query for human feedback, we resort to a number of stream-based active learning query strategies. Moreover, since we not know in advance which query strategy will be the most adequate for a certain language pair and set of Machine Translation models, we propose to dynamically combine multiple strategies using prediction with expert advice. Our experiments show that using active learning allows to converge to the best Machine Translation systems with fewer human interactions. Furthermore, combining multiple strategies using prediction with expert advice often outperforms several individual active learning strategies with even fewer interactions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Vânia Mendonça (2 papers)
  2. Ricardo Rei (34 papers)
  3. Luisa Coheur (33 papers)
  4. Alberto Sardinha (16 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.