Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A randomized singular value decomposition for third-order oriented tensors (2203.02761v3)

Published 5 Mar 2022 in math.NA and cs.NA

Abstract: The oriented singular value decomposition (O-SVD) proposed by Zeng and Ng provides a hybrid approach to the t-product based third-order tensor singular value decomposition with the transform matrix being a factor matrix of the higher order singular value decomposition. Continuing along this vein, this paper explores realizing the O-SVD more efficiently by the tensor-train rank-1 decomposition and gives a truncated O-SVD. Motivated by the success of probabilistic algorithms, we develop a randomized version of the O-SVD and present its detailed error analysis. The new algorithm has advantages in efficiency while keeping good accuracy compared with the current tensor decompositions. Our claims are supported by numerical experiments on several oriented tensors from real applications.

Citations (3)

Summary

We haven't generated a summary for this paper yet.