Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Very Large-Scale Singular Value Decomposition Using Tensor Train Networks (1410.6895v2)

Published 25 Oct 2014 in math.NA and cs.NA

Abstract: We propose new algorithms for singular value decomposition (SVD) of very large-scale matrices based on a low-rank tensor approximation technique called the tensor train (TT) format. The proposed algorithms can compute several dominant singular values and corresponding singular vectors for large-scale structured matrices given in a TT format. The computational complexity of the proposed methods scales logarithmically with the matrix size under the assumption that both the matrix and the singular vectors admit low-rank TT decompositions. The proposed methods, which are called the alternating least squares for SVD (ALS-SVD) and modified alternating least squares for SVD (MALS-SVD), compute the left and right singular vectors approximately through block TT decompositions. The very large-scale optimization problem is reduced to sequential small-scale optimization problems, and each core tensor of the block TT decompositions can be updated by applying any standard optimization methods. The optimal ranks of the block TT decompositions are determined adaptively during iteration process, so that we can achieve high approximation accuracy. Extensive numerical simulations are conducted for several types of TT-structured matrices such as Hilbert matrix, Toeplitz matrix, random matrix with prescribed singular values, and tridiagonal matrix. The simulation results demonstrate the effectiveness of the proposed methods compared with standard SVD algorithms and TT-based algorithms developed for symmetric eigenvalue decomposition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Namgil Lee (4 papers)
  2. Andrzej Cichocki (73 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.