Papers
Topics
Authors
Recent
Search
2000 character limit reached

Review on contraction analysis and computation of contraction metrics

Published 2 Mar 2022 in math.DS, math.CA, and math.OC | (2203.01367v1)

Abstract: Contraction analysis considers the distance between two adjacent trajectories. If this distance is contracting, then trajectories have the same long-term behavior. The main advantage of this analysis is that it is independent of the solutions under consideration. Using an appropriate metric, with respect to which the distance is contracting, one can show convergence to a unique equilibrium or, if attraction only occurs in certain directions, to a periodic orbit. Contraction analysis was originally considered for ordinary differential equations, but has been extended to discrete-time systems, control systems, delay equations and many other types of systems. Moreover, similar techniques can be applied for the estimation of the dimension of attractors and for the estimation of different notions of entropy (including topological entropy). This review attempts to link the references in both the mathematical and the engineering literature and, furthermore, point out the recent developments and algorithms in the computation of contraction metrics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.