Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Topological equivalence of submersion functions and topological equivalence of their foliations on the plane: the linear-like case (2203.01019v1)

Published 2 Mar 2022 in math.DS

Abstract: Let $f, g: \mathbb{R}2 \to \mathbb{R}$ be two submersion functions and $\mathscr{F}(f)$ and $\mathscr{F}(g)$ be the regular foliations of $\mathbb{R}2$ whose leaves are the connected components of the levels sets of $f$ and $g$, respectively. The topological equivalence of $f$ and $g$ implies the topological equivalence of $\mathscr{F}(f)$ and $\mathscr{F}(g)$, but the converse is not true, in general. In this paper, we introduce the class of linear-like submersion functions, which is wide enough in order to contain non-trivial behaviors, and provide conditions for the validity of the converse implication for functions inside this class. Our results lead us to a complete topological invariant for topological equivalence in a certain subclass of linear-like submersion functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube