Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Integration of bounded monotone functions: Revisiting the nonsequential case, with a focus on unbiased Monte Carlo (randomized) methods (2203.00423v2)

Published 1 Mar 2022 in math.NA, cs.NA, math.ST, and stat.TH

Abstract: In this article we revisit the problem of numerical integration for monotone bounded functions, with a focus on the class of nonsequential Monte Carlo methods. We first provide new a lower bound on the maximal $Lp$ error of nonsequential algorithms, improving upon a theorem of Novak when p > 1. Then we concentrate on the case p = 2 and study the maximal error of two unbiased methods-namely, a method based on the control variate technique, and the stratified sampling method.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube