Perturbation of invariant subspaces for ill-conditioned eigensystem (2203.00068v1)
Abstract: Given a diagonalizable matrix $A$, we study the stability of its invariant subspaces when its matrix of eigenvectors is ill-conditioned. Let $\mathcal{X}_1$ be some invariant subspace of $A$ and $X_1$ be the matrix storing the right eigenvectors that spanned $\mathcal{X}_1$. It is generally believed that when the condition number $\kappa_2(X_1)$ gets large, the corresponding invariant subspace $\mathcal{X}_1$ will become unstable to perturbation. This paper proves that this is not always the case. Specifically, we show that the growth of $\kappa_2(X_1)$ alone is not enough to destroy the stability. As a direct application, our result ensures that when $A$ gets closer to a Jordan form, one may still estimate its invariant subspaces from the noisy data stably.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.