Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

High-performance Uncertainty Quantification in Large-scale Virtual Clinical Trials of Closed-loop Diabetes Treatment (2202.13927v1)

Published 28 Feb 2022 in math.OC, cs.SY, and eess.SY

Abstract: In this paper, we propose a virtual clinical trial for assessing the performance and identifying risks in closed-loop diabetes treatments. Virtual clinical trials enable fast and risk-free tests of many treatment variations for large populations of fictive patients (represented by mathematical models). We use closed-loop Monte Carlo simulation, implemented in high-performance software and hardware, to quantify the uncertainty in treatment performance as well as to compare the performance in different scenarios or of different closed-loop treatments. Our software can be used for testing a wide variety of control strategies ranging from heuristical approaches to nonlinear model predictive control. We present an example of a virtual clinical trial with one million patients over 52 weeks, and we use high-performance software and hardware to conduct the virtual trial in 1 h and 22 min.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.