Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Inhibition of Rayleigh--Taylor Instability by a Horizontal Magnetic Field in Non-resistive MHD Fluids: the Viscous Case (2202.13731v1)

Published 28 Feb 2022 in math.AP, math-ph, and math.MP

Abstract: It is still open whether the phenomenon of inhibition of Rayleigh--Taylor (RT) instability by a horizontal magnetic field can be mathematically verified for a non-resistive \emph{viscous} magnetohydrodynamic (MHD) fluid in a two-dimensional (2D) horizontal slab domain, since it was roughly proved in the linearized case by Wang in \cite{WYC}. In this paper, we prove such inhibition phenomenon by the (nonlinear) inhomogeneous, incompressible, \emph{viscous case} with \emph{Navier (slip) boundary condition}. More precisely, we show that there is a critical number of field strength $m_{\mm{C}}$, such that if the strength $|m|$ of a horizontal magnetic field is bigger than $m_{\mm{C}}$, then the small perturbation solution around the magnetic RT equilibrium state is {algebraically} stable in time. In addition, we also provide a nonlinear instability result for the case $|m|\in[0, m_{\mm{C}})$. The instability result presents that a horizontal magnetic field can not inhibit the RT instability, if it's strength is too small.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.