Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Towards Class-agnostic Tracking Using Feature Decorrelation in Point Clouds (2202.13524v2)

Published 28 Feb 2022 in cs.CV

Abstract: Single object tracking in point clouds has been attracting more and more attention owing to the presence of LiDAR sensors in 3D vision. However, the existing methods based on deep neural networks focus mainly on training different models for different categories, which makes them unable to perform well in real-world applications when encountering classes unseen during the training phase. In this work, we investigate a more challenging task in the LiDAR point clouds, class-agnostic tracking, where a general model is supposed to be learned for any specified targets of both observed and unseen categories. In particular, we first investigate the class-agnostic performances of the state-of-the-art trackers via exposing the unseen categories to them during testing, finding that a key factor for class-agnostic tracking is how to constrain fused features between the template and search region to maintain generalization when the distribution is shifted from observed to unseen classes. Therefore, we propose a feature decorrelation method to address this problem, which eliminates the spurious correlations of the fused features through a set of learned weights and further makes the search region consistent among foreground points and distinctive between foreground and background points. Experiments on the KITTI and NuScenes demonstrate that the proposed method can achieve considerable improvements by benchmarking against the advanced trackers P2B and BAT, especially when tracking unseen objects.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.