Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

U-statistics of growing order and sub-Gaussian mean estimators with sharp constants (2202.11842v3)

Published 24 Feb 2022 in math.ST, math.PR, and stat.TH

Abstract: This paper addresses the following question: given a sample of i.i.d. random variables with finite variance, can one construct an estimator of the unknown mean that performs nearly as well as if the data were normally distributed? One of the most popular examples achieving this goal is the median of means estimator. However, it is inefficient in a sense that the constants in the resulting bounds are suboptimal. We show that a permutation-invariant modification of the median of means estimator admits deviation guarantees that are sharp up to $1+o(1)$ factor if the underlying distribution possesses more than $\frac{3+\sqrt{5}}{2}\approx 2.62$ moments and is absolutely continuous with respect to the Lebesgue measure. This result yields potential improvements for a variety of algorithms that rely on the median of means estimator as a building block. At the core of our argument is are the new deviation inequalities for the U-statistics of order that is allowed to grow with the sample size, a result that could be of independent interest.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.