Controlling conservation laws II: compressible Navier-Stokes equations (2202.11248v1)
Abstract: We propose, study, and compute solutions to a class of optimal control problems for hyperbolic systems of conservation laws and their viscous regularization. We take barotropic compressible Navier--Stokes equations (BNS) as a canonical example. We first apply the entropy--entropy flux--metric condition for BNS. We select an entropy function and rewrite BNS to a summation of flux and metric gradient of entropy. We then develop a metric variational problem for BNS, whose critical points form a primal-dual BNS system. We design a finite difference scheme for the variational system. The numerical approximations of conservation laws are implicit in time. We solve the variational problem with an algorithm inspired by the primal-dual hybrid gradient method. This includes a new method for solving implicit time approximations for conservation laws, which seems to be unconditionally stable. Several numerical examples are presented to demonstrate the effectiveness of the proposed algorithm.