Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kinetic functions for nonclassical shocks, entropy stability, and discrete summation by parts (2007.08780v2)

Published 17 Jul 2020 in math.NA, cs.NA, and math.AP

Abstract: We study nonlinear hyperbolic conservation laws with non-convex flux in one space dimension and, for a broad class of numerical methods based on summation by parts operators, we compute numerically the kinetic functions associated with each scheme. As established by LeFloch and collaborators, kinetic functions (for continuous or discrete models) uniquely characterize the macro-scale dynamics of small-scale dependent, undercompressive, nonclassical shock waves. We show here that various entropy-dissipative numerical schemes can yield nonclassical solutions containing classical shocks, including Fourier methods with (super-) spectral viscosity, finite difference schemes with artificial dissipation, discontinuous Galerkin schemes with or without modal filtering, and TeCNO schemes. We demonstrate numerically that entropy stability does not imply uniqueness of the limiting numerical solutions for scalar conservation laws in one space dimension, and we compute the associated kinetic functions in order to distinguish between these schemes. In addition, we design entropy-dissipative schemes for the Keyfitz-Kranzer system whose solutions are measures with delta shocks. This system illustrates the fact that entropy stability does not imply boundedness under grid refinement.

Citations (5)

Summary

We haven't generated a summary for this paper yet.