Set-homogeneous hypergraphs (2202.09613v1)
Abstract: A $k$-uniform hypergraph $M$ is set-homogeneous if it is countable (possibly finite) and whenever two finite induced subhypergraphs $U,V$ are isomorphic there is $g\in Aut(M)$ with $Ug=V$; the hypergraph $M$ is said to be homogeneous if in addition every isomorphism between finite induced subhypergraphs extends to an automorphism. We give four examples of countably infinite set-homogeneous $k$-uniform hypergraphs which are not homogeneous (two with $k=3$, one with $k=4$, and one with $k=6$). Evidence is also given that these may be the only ones, up to complementation. For example, for $k=3$ there is just one countably infinite $k$-uniform hypergraph whose automorphism group is not 2-transitive, and there is none for $k=4$. We also give an example of a finite set-homogeneous 3-uniform hypergraph which is not homogeneous.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.