Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Worst-Case Analysis for Root Isolation Algorithms (2202.06428v3)

Published 13 Feb 2022 in cs.CC, cs.SC, math.AG, and math.PR

Abstract: Isolating the real roots of univariate polynomials is a fundamental problem in symbolic computation and it is arguably one of the most important problems in computational mathematics. The problem has a long history decorated with numerous ingenious algorithms and furnishes an active area of research. However, the worst-case analysis of root-finding algorithms does not correlate with their practical performance. We develop a smoothed analysis framework for polynomials with integer coefficients to bridge the gap between the complexity estimates and the practical performance. In this setting, we derive that the expected bit complexity of DESCARTES solver to isolate the real roots of a polynomial, with coefficients uniformly distributed, is $\widetilde{\mathcal{O}}_B(d2 + d \tau)$, where $d$ is the degree of the polynomial and $\tau$ the bitsize of the coefficients.

Citations (2)

Summary

We haven't generated a summary for this paper yet.