Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A $p$-adic Descartes solver: the Strassman solver (2203.07016v1)

Published 14 Mar 2022 in math.NT, cs.CC, cs.NA, cs.SC, math.NA, and math.PR

Abstract: Solving polynomials is a fundamental computational problem in mathematics. In the real setting, we can use Descartes' rule of signs to efficiently isolate the real roots of a square-free real polynomial. In this paper, we translate this method into the $p$-adic worlds. We show how the $p$-adic analog of Descartes' rule of signs, Strassman's theorem, leads to an algorithm to isolate the roots of a square-free $p$-adic polynomial. Moreover, we show that this algorithm runs in $\mathcal{O}(d2\log3d)$-time for a random $p$-adic polynomial of degree $d$. To perform this analysis, we introduce the condition-based complexity framework from real/complex numerical algebraic geometry into $p$-adic numerical algebraic geometry.

Citations (3)

Summary

We haven't generated a summary for this paper yet.