Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 73 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Physics-informed PointNet: A deep learning solver for steady-state incompressible flows and thermal fields on multiple sets of irregular geometries (2202.05476v2)

Published 11 Feb 2022 in physics.flu-dyn and physics.comp-ph

Abstract: We present a novel physics-informed deep learning framework for solving steady-state incompressible flow on multiple sets of irregular geometries by incorporating two main elements: using a point-cloud based neural network to capture geometric features of computational domains, and using the mean squared residuals of the governing partial differential equations, boundary conditions, and sparse observations as the loss function of the network to capture the physics. While the solution of the continuity and Navier-Stokes equations is a function of the geometry of the computational domain, current versions of physics-informed neural networks have no mechanism to express this functionally in their outputs, and thus are restricted to obtain the solutions only for one computational domain with each training procedure. Using the proposed framework, three new facilities become available. First, the governing equations are solvable on a set of computational domains containing irregular geometries with high variations with respect to each other but requiring training only once. Second, after training the introduced framework on the set, it is now able to predict the solutions on domains with unseen geometries from seen and unseen categories as well. The former and the latter both lead to savings in computational costs. Finally, all the advantages of the point-cloud based neural network for irregular geometries, already used for supervised learning, are transferred to the proposed physics-informed framework. The effectiveness of our framework is shown through the method of manufactured solutions and thermally-driven flow for forward and inverse problems.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.