Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

L0Learn: A Scalable Package for Sparse Learning using L0 Regularization (2202.04820v2)

Published 10 Feb 2022 in cs.LG, cs.MS, stat.CO, and stat.ML

Abstract: We present L0Learn: an open-source package for sparse linear regression and classification using $\ell_0$ regularization. L0Learn implements scalable, approximate algorithms, based on coordinate descent and local combinatorial optimization. The package is built using C++ and has user-friendly R and Python interfaces. L0Learn can address problems with millions of features, achieving competitive run times and statistical performance with state-of-the-art sparse learning packages. L0Learn is available on both CRAN and GitHub (https://cran.r-project.org/package=L0Learn and https://github.com/hazimehh/L0Learn).

Citations (9)

Summary

We haven't generated a summary for this paper yet.