Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Sparse Classifiers: Continuous and Mixed Integer Optimization Perspectives (2001.06471v2)

Published 17 Jan 2020 in stat.ML, cs.LG, math.OC, and stat.CO

Abstract: We consider a discrete optimization formulation for learning sparse classifiers, where the outcome depends upon a linear combination of a small subset of features. Recent work has shown that mixed integer programming (MIP) can be used to solve (to optimality) $\ell_0$-regularized regression problems at scales much larger than what was conventionally considered possible. Despite their usefulness, MIP-based global optimization approaches are significantly slower compared to the relatively mature algorithms for $\ell_1$-regularization and heuristics for nonconvex regularized problems. We aim to bridge this gap in computation times by developing new MIP-based algorithms for $\ell_0$-regularized classification. We propose two classes of scalable algorithms: an exact algorithm that can handle $p\approx 50,000$ features in a few minutes, and approximate algorithms that can address instances with $p\approx 106$ in times comparable to the fast $\ell_1$-based algorithms. Our exact algorithm is based on the novel idea of \textsl{integrality generation}, which solves the original problem (with $p$ binary variables) via a sequence of mixed integer programs that involve a small number of binary variables. Our approximate algorithms are based on coordinate descent and local combinatorial search. In addition, we present new estimation error bounds for a class of $\ell_0$-regularized estimators. Experiments on real and synthetic data demonstrate that our approach leads to models with considerably improved statistical performance (especially, variable selection) when compared to competing methods.

Citations (38)

Summary

We haven't generated a summary for this paper yet.