Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Framework for the Time- and Frequency-Domain Assessment of High-Order Interactions in Brain and Physiological Networks (2202.04179v1)

Published 8 Feb 2022 in stat.ME

Abstract: While the standard network description of complex systems is based on quantifying links between pairs of system units, higher-order interactions (HOIs) involving three or more units play a major role in governing the collective network behavior. This work introduces an approach to quantify pairwise and HOIs for multivariate rhythmic processes interacting across multiple time scales. We define the so-called O-information rate (OIR) as a new metric to assess HOIs for multivariate time series, and propose a framework to decompose it into measures quantifying Granger-causal and instantaneous influences, as well as to expand it in the frequency domain. The framework exploits the spectral representation of vector autoregressive and state-space models to assess synergistic and redundant interactions among groups of processes, both in specific bands and in the time domain after whole-band integration. Validation on simulated networks illustrates how the spectral OIR can highlight redundant and synergistic HOIs emerging at specific frequencies but not using time-domain measures. The application to physiological networks described by heart period, arterial pressure and respiration measured in healthy subjects during paced breathing, and to brain networks described by ECoG signals acquired in an animal experiment during anesthesia, document the capability of our approach to identify informational circuits relevant to well-defined cardiovascular oscillations and brain rhythms and related to specific physiological mechanisms of autonomic control and altered consciousness. The proposed framework allows a hierarchically-organized evaluation of time- and frequency-domain interactions in networks mapped by multivariate time series, and its high flexibility and scalability make it suitable to investigate networks beyond pairwise interactions in neuroscience, physiology and other fields.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.