Non-Abelian hierarchies of compatible maps, associated integrable difference systems and Yang-Baxter maps (2202.03412v2)
Abstract: We present two non-equivalent families of hierarchies of non-Abelian compatible maps and we provide their Lax pair formulation. These maps are associated with families of hierarchies of non-Abelian Yang-Baxter maps, which we provide explicitly. In addition, these hierarchies correspond to integrable difference systems with variables defined on edges of an elementary cell of the $\mathbb{Z}2$ graph, that in turn lead to hierarchies of difference systems with variables defined on vertices of the same cell. In that respect we obtain the non-Abelian lattice-modified Gel'fand-Dikii hierarchy, together with the explicit form of a non-Abelian hierarchy that we refer to as the lattice-NQC (or lattice-$(Q3)_0$) Gel'fand-Dikii hierarchy.
- On some integrable discrete–time systems associated with the Bogoyavlensky lattices. Physica A, 228:172–188, 1996.
- Classical limit for a 3D lattice spin model. Phys. Lett. A., 232:211–216, 1997.
- A. Tongas and F. Nijhoff. The Boussinesq integrable system: compatible lattice and continuum structures. Glasgow Math. J., 47A:205–219, 2004.
- K. Maruno and K. Kajiwara. The discrete potential Boussinesq equation and its multisoliton solutions. Appl. Anal., 89:593–609, 2010.
- J. Hietarinta. Boussinesq-like multi-component lattice equations and multi-dimensional consistency. J. Phys. A: Math. Theor., 44:165204, 2011.
- J. Atkinson. Integrable lattice equations: connection to the Möbius group, Bäcklund transformations and solutions. PhD thesis, University of Leeds, 2008. http://etheses.whiterose.ac.uk/9081/.
- M. Hay. Lattice modified KdV hierarchy from a Lax pair expansion. J. Phys. A, 46:015203, 2013.
- On the integrability of a new lattice equation found by multiple scale analysis. J. Phys. A: Math. Theor., 47:265204, 2014.
- Darboux transformation for the vector sine-Gordon equation and integrable equations on a sphere. Lett. Math. Phys., 106:973–996, 2016.
- Constructing initial value spaces of lattice equations. arXiv:1807.06162[nlin], 2018.
- A.P. Kels. Extended Z-invariance for integrable vector and face models and multi-component integrable quad equations. J. Stat. Phys., 176:1375–1408, 2019.
- A.P. Kels. Two-component Yang-Baxter maps associated to integrable quad equations. arXiv:1910.03562v5 [math-ph], 2019.
- Integrable two-component difference systems of equations. Proc. R. Soc. A., 476:20190668, 2020.
- Multi-component extension of CAC systems. SIGMA, 16(060):30pages, 2020.
- J. Hietarinta and D.-J. Zhang. Discrete Boussinesq–type equations. In N. Euler and D.-J. Zhang, editors, Nonlinear Systems and Their Remarkable Mathematical Structures: Volume 3, Contributions from China (1st ed.). Chapman and Hall/CRC. 2021. arXiv:2012.00495[nlin.SI]
- Discrete Systems and Integrablity. Cambridge Texts in Applied Mathematics (No. 54). Cambridge University Press, 2016.
- The direct linearization approach to hierarchies of integrable PDEs in 2+1212+12 + 1 dimensions: I. Lattice equations and the differential-difference hierarchies. Inverse Problems, 6:567–590, 1990.
- B. Kupershmidt. KP or mKP: Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems. AMS, Providence, 2000.
- A Dimakis and F. Müller-Hoissen. On generalized Lotka-Volterra lattices. Czech. J. Phys., 52:1187–1193, 2002.
- Integrable noncommutative equations on quad-graphs. the consistency approach. Lett. Math. Phys., 61(3):241–254, 2002.
- Exact solutions of quantum mappings from the lattice KdV as multi-dimensional operator difference equations. J. Phys. A: Math. Gen., 38(43):9503–9527, 2005.
- J.J.C Nimmo. On a non-Abelian Hirota-Miwa equation. J. Phys. A: Math. Gen., 39:5053–5065, 2006.
- A. Doliwa. Non-commutative lattice-modified Gel’fand-Dikii systems. J. Phys. A: Math. Theor., 46(20):205202, 2013.
- A. Doliwa. Non-commutative rational Yang-Baxter maps. Lett. Math. Phys., 104:299–309, 2014.
- A. Doliwa and M. Noumi. The Coxeter relations and KP map for non-commuting symbols. Lett. Math. Phys., 110:2743–2762, 2020.
- P. Kassotakis. Discrete Lax pairs and hierarchies of integrable difference systems. arXiv:nlin/2104.14529, 2021.
- A. Dimakis and I. G. Korepanov. Grassmannian-parameterized solutions to direct-sum polygon and simplex equations. J. Math. Phys., 62(5):051701, 2021.
- A. Doliwa. Non-commutative q-Painlevé VI equation. J. Phys. A: Math. Theor., 47(3):035203, 2013.
- Grassmann extensions of Yang–Baxter maps. J. Phys. A: Math. Theor., 49(14):145202, 2016.
- S. Konstantinou-Rizos and T.E. Kouloukas. A noncommutative discrete potential KdV lift. J. Math. Phys., 59:063506, 2018.
- Tetrahedron maps and symmetries of three dimensional integrable discrete equations. J. Math. Phys., 60:123503, 2019.
- Integrable extensions of the Adler map via Grassmann algebras. Theor. Math. Phys., 207(2):553–559, 2021.
- P. Kassotakis and T. Kouloukas. On non-abelian quadrirational Yang-Baxter maps. J. Phys. A: Math. Theor., 55(17):175203, 2022.
- A. Doliwa and A. Siemaszko. Integrability and geometry of the Wynn recurrence. Numer. Algorithms, 92, 571-596, 2023. arXiv:2201.01749 [nlin.SI],
- A. Doliwa. Non-commutative Hermite–Pade approximation and integrability. Lett. Math. Phys., 112, 68, 2022.
- Yang-Baxter maps and symmetries of integrable equations on quad-graphs. J. Math. Phys., 47:Art. no. 083502, 2006.
- B. K. Harrison. Bäcklund transformation for the Ernst equation of general relativity. Phys. Rev. Lett., 41:1197–1200, 1978.
- On quadrirational Yang-Baxter maps. SIGMA, 6:9pp, 2010.
- The lattice Gel’fand-Dikii hierarchy. Inverse Problems, 8(4):597–621, aug 1992.
- F.W. Nijhoff. On some “Schwarzian equations” and their discrete analogues. In A.S. Fokas and I.M. Gel’fand, editors, Algebraic Aspects of Integrable Systems: In memory of Irene Dorfman, pages 237–260. Birkhäuser Verlag, 1996.
- F. Nijhoff. A higher-rank version of the Q3 equation. arXiv:1104.1166 [nlin.SI]], 2011.
- An integrable multicomponent quad–equation and its Lagrangian formulation. Theor. Math. Phys., 173:1644–1653, 2012.
- Direct linearization of extended lattice BSQ systems. Stud. Appl. Math., 129(2):220–248, 2012.
- A.P. Fordy and P. Xenitidis. ℤNsuperscriptℤ𝑁\mathbb{Z}^{N}blackboard_Z start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT graded discrete Lax pairs and integrable difference equations. J. Phys. A: Math. Theor., 50(16):165205, 2017.
- q-painlevé systems arising from q-KP hierarchy. Lett. Math. Phys., 62:259–268, 2002.
- Direct linearization of nonlinear difference-difference equations. Phys. Lett. A, 97:125–128, 1983.
- Linear integral equations and nonlinear difference-difference equations. Physica A, 125:344–380, 1984.
- Classification of integrable equations on quad-graphs. The consistency approach. Comm. Math. Phys., 233(3):513–543, 2003.
- Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings. Comm. Anal. Geom., 12(5):967–1007, 2004.
- P. Etingof. Geometric crystals and set-theoretical solutions to the quantum Yang-Baxter equation. Commun. Algebra, 31(4):1961–1973, 2003.
- E.K. Sklyanin. Classical limits of SU(2)2(2)( 2 )–invariant solutions of the Yang–Baxter equation. J. Soviet Math., 40:93–107, 1988.
- V.G. Drinfeld. On some unsolved problems in quantum group theory, quantum groups. Lecture Notes in Math., 1510:1–8, 1992.
- V.M. Bukhshtaber. Yang-Baxter mappings. Uspekhi Mat. Nauk, 53:241–242, 1998.
- A.P. Veselov. Yang-Baxter maps and integrable dynamics. Phys. Lett. A, 314:214–221, 2003.
- Lax matrices for Yang-Baxter maps. J. Nonlin. Math. Phys, 10(2):223–230, 2003.
- F.W. Nijhoff. Lax pair for the Adler (lattice Krichever-Novikov) system. Phys. Lett. A, 297:49–58, 2002.
- A.P. Fordy and J. Gibbons. Integrable nonlinear Klein-Gordon equations and Toda lattices. Commun. Math. Phys., 77:21–30, 1980.
- O. I. Bogoyavlenskiĭ. Some constructions of integrable dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat., 51(4):737–766, 910, 1987.
- Morphisms and automorphisms of skew–symmetric lotka–volterra systems. J. Phys. A: Math. Theor., 55(32):325201, 2022.
- A. Doliwa and P.M. Santini. The symmetric, D-invariant and Egorov reductions of the quadrilateral lattice. Journal of Geometry and Physics, 36(1):60–102, 2000.
- P. Kassotakis and M. Nieszporski. Families of integrable equations. SIGMA, 7(100):14pp, 2011.
- P. Kassotakis and M. Nieszporski. On non-multiaffine consistent-around-the-cube lattice equations. Phys. Lett. A, 376(45):3135–3140, 2012. arXiv:1106.0435.
- P. Kassotakis and M. Nieszporski. Difference systems in bond and face variables and non-potential versions of discrete integrable systems. J. Phys. A: Math. Theor., 51(38):385203, 2018.
- M. Nieszporski and P. Kassotakis. Systems of difference equations on a vector valued function that admits 3d vector space of scalar potentials. arXiv:1908.01706[nlin], 2019.
- Symmetries and integrability of discrete equations defined on a black-white lattice. J. Phys. A: Math. Theor., 42:454025, 2009.
- Discrete nonlinear hyperbolic equations. Classification of integrable cases. Funct. Anal. Appl., 43(1):3–17, 2009.
- R. Boll. Classification of 3D consistent quad-equations. J. Nonlinear Math. Phys., 18(3):337–365, 2011.
- L. Bianchi. Lezioni di geometrica differenziale. Enrico Spoerri, 1894.
- R. Hirota. Nonlinear partial difference equations III; discrete sine-Gordon equation. J. Phys. Soc. Jpn., 43:2079–2086, 1977.
- Entwining Yang-Baxter maps and integrable lattices. Banach Center Publ., 93:163–175, 2011.
- P Kassotakis. Invariants in separated variables: Yang-Baxter, entwining and transfer maps. SIGMA, 15(048):36pp, 2019.
- Yang-Baxter maps from the discrete BKP equation. SIGMA, 6(028):11pp, 2010.
- V.E. Adler. Recutting of polygons. Funct. Anal. Appl., 27(2):79–80, 1993.
- Cauchy problem for integrable discrete equations on quad–graphs. Acta Appl. Math., 84:237–262, 2004.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.