Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Locally mediated entanglement in linearised quantum gravity (2202.03368v2)

Published 7 Feb 2022 in quant-ph and gr-qc

Abstract: The current interest in laboratory detection of entanglement mediated by gravity was sparked by an information--theoretic argument: entanglement mediated by a local field certifies that the field is not classical. Previous derivations of the effect modelled gravity as instantaneous; here we derive it from linearised quantum general relativity while keeping Lorentz invariance explicit, using the path integral formalism. In this framework, entanglement is clearly mediated by a quantum feature of the field. We also point out the possibility of observing retarded entanglement, which cannot be explained by an instantaneous interaction. This is a difficult experiment for gravity, but is plausible for the analogous electromagnetic case.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. C. Marletto and V. Vedral, Gravitationally-induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity, Physical Review Letters 119, 240402 (2017), arXiv:1707.06036 .
  2. A. Al Balushi, W. Cong, and R. B. Mann, Optomechanical quantum Cavendish experiment, Physical Review A 98, 043811 (2018), arXiv:1806.06008 .
  3. M. Christodoulou, A. Di Biagio, and P. Martin-Dussaud, An experiment to test the discreteness of time, arXiv:2007.08431 (2020).
  4. M. Christodoulou and C. Rovelli, On the possibility of experimental detection of the discreteness of time, Frontiers in Physics 8, 207 (2020), arXiv:1812.01542 .
  5. C. Rovelli, Considerations on Quantum Gravity Phenomenology, Universe 7, 439 (2021), arXiv:2111.07828 .
  6. S. Carlip, Is Quantum Gravity Necessary?, Classical and Quantum Gravity 25, 154010 (2008), arXiv:0803.3456 .
  7. J. Oppenheim, A post-quantum theory of classical gravity?, arXiv:1811.03116 (2018).
  8. D. Kafri, J. M. Taylor, and G. J. Milburn, A classical channel model for gravitational decoherence, New Journal of Physics 16, 065020 (2014).
  9. R. Penrose, On gravity’s role in quantum state reduction, General Relativity and Gravitation 28, 581 (1996).
  10. L. Diósi, Models for universal reduction of macroscopic quantum fluctuations, Physical Review A 40, 1165 (1989).
  11. C. Marletto and V. Vedral, When can gravity path-entangle two spatially superposed masses?, Physical Review D 98, 046001 (2018).
  12. T. D. Galley, F. Giacomini, and J. H. Selby, A no-go theorem on the nature of the gravitational field beyond quantum theory, arXiv:2012.01441v3 (2021).
  13. C. Marletto and V. Vedral, Witnessing non-classicality beyond quantum theory, Physical Review D 102, 086012 (2020), arXiv:2003.07974 .
  14. C. Anastopoulos and B.-L. Hu, Comment on “A Spin Entanglement Witness for Quantum Gravity” and on “Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity”, arXiv:1804.11315 (2018).
  15. C. Anastopoulos, M. Lagouvardos, and K. Savvidou, Gravitational effects in macroscopic quantum systems: A first-principles analysis, Classical and Quantum Gravity 38, 155012 (2021), arXiv:2103.08044 .
  16. M. Christodoulou and C. Rovelli, On the possibility of laboratory evidence for quantum superposition of geometries, Physics Letters B 792, 64 (2019), arXiv:1808.05842 .
  17. C. P. Burgess, Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory, Living Reviews in Relativity 7, 5 (2004).
  18. D. Wallace, Quantum Gravity at Low Energies, arXiv:2112.12235 (2021).
  19. S. M. Kopeikin and G. Schafer, Lorentz Covariant Theory of Light Propagation in Gravitational Fields of Arbitrary-Moving Bodies, Physical Review D 60, 124002 (1999), arXiv:gr-qc/9902030 .
  20. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
  21. F. Hasselbach, Progress in electron- and ion-interferometry, Reports on Progress in Physics 73, 016101 (2009).
  22. R. J. Marshman, A. Mazumdar, and S. Bose, Locality and Entanglement in Table-Top Testing of the Quantum Nature of Linearized Gravity, Physical Review A 101, 052110 (2020), arXiv:1907.01568 .
  23. D. Carney, H. Müller, and J. M. Taylor, Using an atom interferometer to infer gravitational entanglement generation, PRX Quantum 2, 030330 (2021), arXiv:2101.11629 .
  24. M. Maggiore, Gravitational Waves Volume 1: Theory and Experiments (Oxford University Press, Oxford, 2008).
  25. S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity (Addison Wesley, San Francisco, 2004).
  26. É. É. Flanagan and S. A. Hughes, The basics of gravitational wave theory, New Journal of Physics 7, 204 (2005).
Citations (44)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube