Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal effect of racial bias in data and machine learning algorithms on user persuasiveness & discriminatory decision making: An Empirical Study (2202.00471v3)

Published 22 Jan 2022 in cs.CL and cs.CY

Abstract: Language data and models demonstrate various types of bias, be it ethnic, religious, gender, or socioeconomic. AI/NLP models, when trained on the racially biased dataset, AI/NLP models instigate poor model explainability, influence user experience during decision making and thus further magnifies societal biases, raising profound ethical implications for society. The motivation of the study is to investigate how AI systems imbibe bias from data and produce unexplainable discriminatory outcomes and influence an individual's articulateness of system outcome due to the presence of racial bias features in datasets. The design of the experiment involves studying the counterfactual impact of racial bias features present in language datasets and its associated effect on the model outcome. A mixed research methodology is adopted to investigate the cross implication of biased model outcome on user experience, effect on decision-making through controlled lab experimentation. The findings provide foundation support for correlating the implication of carry-over an artificial intelligence model solving NLP task due to biased concept presented in the dataset. Further, the research outcomes justify the negative influence on users' persuasiveness that leads to alter the decision-making quotient of an individual when trying to rely on the model outcome to act. The paper bridges the gap across the harm caused in establishing poor customer trustworthiness due to an inequitable system design and provides strong support for researchers, policymakers, and data scientists to build responsible AI frameworks within organizations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (6)