Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bias Neutralization Framework: Measuring Fairness in Large Language Models with Bias Intelligence Quotient (BiQ) (2404.18276v1)

Published 28 Apr 2024 in cs.CL and cs.AI

Abstract: The burgeoning influence of LLMs in shaping public discourse and decision-making underscores the imperative to address inherent biases within these AI systems. In the wake of AI's expansive integration across sectors, addressing racial bias in LLMs has never been more critical. This paper introduces a novel framework called Comprehensive Bias Neutralization Framework (CBNF) which embodies an innovative approach to quantifying and mitigating biases within LLMs. Our framework combines the LLM Bias Index (LLMBI) [Oketunji, A., Anas, M., Saina, D., (2023)] and Bias removaL with No Demographics (BLIND) [Orgad, H., Belinkov, Y. (2023)] methodologies to create a new metric called Bias Intelligence Quotient (BiQ)which detects, measures, and mitigates racial bias in LLMs without reliance on demographic annotations. By introducing a new metric called BiQ that enhances LLMBI with additional fairness metrics, CBNF offers a multi-dimensional metric for bias assessment, underscoring the necessity of a nuanced approach to fairness in AI [Mehrabi et al., 2021]. This paper presents a detailed analysis of Latimer AI (a LLM incrementally trained on black history and culture) in comparison to ChatGPT 3.5, illustrating Latimer AI's efficacy in detecting racial, cultural, and gender biases through targeted training and refined bias mitigation strategies [Latimer & Bender, 2023].

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Malur Narayan (1 paper)
  2. John Pasmore (1 paper)
  3. Elton Sampaio (1 paper)
  4. Vijay Raghavan (6 papers)
  5. Gabriella Waters (3 papers)