Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Global Convergence of Particle Swarm Optimization Methods (2201.12460v2)

Published 29 Jan 2022 in math.NA, cs.NA, math.AP, and math.OC

Abstract: In this paper we provide a rigorous convergence analysis for the renowned particle swarm optimization method by using tools from stochastic calculus and the analysis of partial differential equations. Based on a time-continuous formulation of the particle dynamics as a system of stochastic differential equations, we establish convergence to a global minimizer of a possibly nonconvex and nonsmooth objective function in two steps. First, we prove consensus formation of an associated mean-field dynamics by analyzing the time-evolution of the variance of the particle distribution. We then show that this consensus is close to a global minimizer by employing the asymptotic Laplace principle and a tractability condition on the energy landscape of the objective function. These results allow for the usage of memory mechanisms, and hold for a rich class of objectives provided certain conditions of well-preparation of the hyperparameters and the initial datum. In a second step, at least for the case without memory effects, we provide a quantitative result about the mean-field approximation of particle swarm optimization, which specifies the convergence of the interacting particle system to the associated mean-field limit. Combining these two results allows for global convergence guarantees of the numerical particle swarm optimization method with provable polynomial complexity. To demonstrate the applicability of the method we propose an efficient and parallelizable implementation, which is tested in particular on a competitive and well-understood high-dimensional benchmark problem in machine learning.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com