Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consensus based optimization via jump-diffusion stochastic differential equations (2205.04880v1)

Published 10 May 2022 in math.PR, cs.NA, math.NA, and math.OC

Abstract: We introduce a new consensus based optimization (CBO) method where interacting particle system is driven by jump-diffusion stochastic differential equations. We study well-posedness of the particle system as well as of its mean-field limit. The major contributions of this paper are proofs of convergence of the interacting particle system towards the mean-field limit and convergence of a discretized particle system towards the continuous-time dynamics in the mean-square sense. We also prove convergence of the mean-field jump-diffusion SDEs towards global minimizer for a large class of objective functions. We demonstrate improved performance of the proposed CBO method over earlier CBO methods in numerical simulations on benchmark objective functions.

Citations (15)

Summary

We haven't generated a summary for this paper yet.