Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

On the stability of the invariant probability measures of McKean-Vlasov equations (2201.11612v4)

Published 27 Jan 2022 in math.PR and math.AP

Abstract: We study the long-time behavior of some McKean-Vlasov stochastic differential equations used to model the evolution of large populations of interacting agents. We give conditions ensuring the local stability of an invariant probability measure. Lions derivatives are used in a novel way to obtain our stability criteria. We obtain results for non-local McKean-Vlasov equations on $\mathbb{R}d$ and for McKean-Vlasov equations on the torus where the interaction kernel is given by a convolution. On $\mathbb{R}d$, we prove that the location of the roots of an analytic function determines the stability. On the torus, our stability criterion involves the Fourier coefficients of the interaction kernel. In both cases, we prove the convergence in the Wasserstein metric $W_1$ with an exponential rate of convergence.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)