2000 character limit reached
Continuous orbit equivalence rigidity for left-right wreath product actions (2201.10765v2)
Published 26 Jan 2022 in math.DS and math.OA
Abstract: Drimbe and Vaes proved an orbit equivalence superrigidity theorem for left-right wreath product actions in the measurable setting. We establish the counterpart result in the topological setting for continuous orbit equivalence. This gives us minimal, topologically free actions that are continuous orbit equivalence superrigid. One main ingredient for the proof is to show continuous cocycle superrigidity for certain generalized full shifts, extending our previous result with Chung.