Papers
Topics
Authors
Recent
2000 character limit reached

Continuous orbit equivalence rigidity

Published 5 Mar 2015 in math.DS and math.OA | (1503.01704v1)

Abstract: We take the first steps towards a better understanding of continuous orbit equivalence, i.e., topological orbit equivalence with continuous cocycles. First, we characterise continuous orbit equivalence in terms of isomorphisms of C*-crossed products preserving Cartan subalgebras. This is the topological analogue of the classical result by Singer and Feldman-Moore in the measurable setting. Secondly, we turn to continuous orbit equivalence rigidity, i.e., the question whether for certain classes of topological dynamical systems, continuous orbit equivalence implies conjugacy. We show that this is not always the case by constructing topological dynamical systems (actions of free abelian groups, and also non-abelian free groups) which are continuously orbit equivalent but not conjugate. Furthermore, we prove positive rigidity results. For instance, it turns out that general topological Bernoulli actions are rigid when compared with actions of nilpotent groups, and that topological Bernoulli actions of duality groups are rigid when compared with actions of solvable groups. The same is true for certain subshifts of full shifts over finite alphabets.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

  1. Xin Li 

Collections

Sign up for free to add this paper to one or more collections.