Papers
Topics
Authors
Recent
2000 character limit reached

Markov decision processes with observation costs: framework and computation with a penalty scheme

Published 19 Jan 2022 in math.OC, cs.NA, and math.NA | (2201.07908v3)

Abstract: We consider Markov decision processes where the state of the chain is only given at chosen observation times and of a cost. Optimal strategies involve the optimisation of observation times as well as the subsequent action values. We consider the finite horizon and discounted infinite horizon problems, as well as an extension with parameter uncertainty. By including the time elapsed from observations as part of the augmented Markov system, the value function satisfies a system of quasi-variational inequalities (QVIs). Such a class of QVIs can be seen as an extension to the interconnected obstacle problem. We prove a comparison principle for this class of QVIs, which implies uniqueness of solutions to our proposed problem. Penalty methods are then utilised to obtain arbitrarily accurate solutions. Finally, we perform numerical experiments on three applications which illustrate our framework.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.